cabecera

 
 

General Analysis of Frequency Containment and Restoration Reserves of Wind Power Plants in Power Systems

J. Glas, A. Semerow, M. Luther

2016/5/20

Abstract

The increasing share of renewable energies, such as photovoltaics and wind power, lead to an all new situation in power systems over the past years. It changes the demand and possibilities of providing ancillary services like frequency containment (FCR) and restoration reserves (FRR). To cover the reduction of conventional generation units, which are usually used to provide those services, new possibilities have to be analysed. The aim of this paper is to show the possibilities of providing FCR and FRR by pitchcontrolled wind power plants, regarding the overall dynamic
system behaviour. Hence, a basic grid model with an integrated wind park, using pitch-control to adjust its power output, is being introduced and described. The simulation results of different wind situations during a power loss in the grid are then presented in order to assert the practicability of wind power plants providing FCR and FRR. As a conclusion, it is to ascertain that, pitch-control can be a way to support conventional units in providing ancillary services, but can’t
be a stand-alone solution.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 14)
Pages:96-101 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/05/04
REF: 237-16 Issue Date: May 2016
DOI:10.24084/repqj14.237 Publisher: EA4EPQ

Authors and affiliations

J. Glas, A. Semerow, M. Luther
Electrical Energy Systems, Friedrich-Alexander University Erlangen-Nuremberg. Germany

Key words

Frequency Containment Reserves, Frequency Restoration Reserves, Wind Power Plants, Wind Speed Dependency,
Pitch-Control, Dynamic System Behaviour.

References

[1] Verband der Netzbetreiber e.V., TransmissionCode2007h, VDN, Berlin (2007).
[2] Deutsche Energie-Agentur GmbH (dena), dena ancillary services study 2030h, dena, Berlin (2014).
[3] Agentur fur Erneuerbare Energien, gThe Combined Power Plant 2 background paper: field testh (german:
Kombikraftwerk 2 Hintergrundpapier: Feldtesth), Berlin (2013).
[4] F. Prillwitz, A. Holst, and H. Weber, Supporting primary control using wind turbinesh (german: Unterstutzung der
Primarregelung durch Windkraftanlagenh), held at 11. Symposium of Maritime Elektrotechnik, Rostock (2004).
[5] M. Wilch and I. Erlich, Primary frequency control by wind turbinesh, held at Power and Energy Society General Meeting, 2010, IEEE, Minneapolis (2010).
[6] S. Heier, Grid Integration of Wind Energy: Onshore and Offshore Conversion Systemsh, 3. Edition, John Wiley &
Sons, Chichester (2014).
[7] E. Hau, Wind turbinesh (german: Windkraftanlagenh, Springer, Berlin Heidelberg (2008).
[8] R. Marenbach, D. Nelles, and C. Tuttas, Electrical Engineering: basics, power supply, drives and power
electronicsh (german: Elektrische Energietechnik: Grundlagen, Energieversorgung, Antriebe und Leistungselektronikh), Springer Vieweg, New York (2013).
[9] M. Kaltschmitt and W. Streicher, gRenewable Energies -systems engineering, economic efficiency, environmental
aspectsh (german: Erneuerbare Energien -Systemtechnik, Wirtschaftlichkeit, Umweltaspekteh), 4. Edition, Springer, Berlin Heidelberg (2005).
[10] M. Muhr and R. Woschitz, Study: partial cabling of the 380kV line Zwaring - Rotenturmh (german: Kurzstudie
Teilverkabelung 380kV-Leitung Zwaring - Rotenturmh), Institut fur Elektrische Anlagen und Hochspannungstechnik, Graz (2001).
[11] G. Herold, Electrical Energy Supply I: three-phase systems - power - economic efficiencyh (german: Elektrische Energieversorgung I: Drehstromsysteme - Leistungen - Wirtschaftlichkeith), 3. Edition, J. Schlembach, Wilburgstetten (2011).
[12] IEEE Power & Energy Society, Dynamic Models for Turbine-Governors in Power System Studiesh, IEEE
(2013).

 
pie