Biocarbons for energy conversion and storage: DEFCS and supercapacitors applications

A. Cuña, E. L. da Silva, M. R. Ortega, C. Radtke, N. Tancredi, S. C. Amico, Malfatti



Activated biocarbons (aBCs) and activated biocarbon monoliths (aBCMs) were obtained by several procedures in order to study their behaviour as PtSn support for ethanol electro-oxidation, and also for use as an electrode in supercapacitors. The textural and chemical properties of the materials were correlated with the electrochemical behaviour. The prepared E. grandis wood based biocarbon materials, have good qualities for use as PtSn catalyst support for DEFCs, and in supercapacitor electrode application. The micropore size and the content of oxygenated functional group have direct incidence on the distribution of the catalyst particles on the aBCs
support surface. In consequently, the electrocatalytic behaviour of the PtSn/aBC is affected. The content of oxygenated functional groups also has a marked effect on the supercapacitors electrode behaviour. It wasdemonstrated that these functional groups are actively involved in the energy storage by the pseudocapacitive phenomenon. The nitric acid treatment is a good method
to generate these functional groups on the aBCMs.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 14)
Pages:210-215 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/05/04
REF:270-16 Issue Date: May 2016
DOI:10.24084/repqj14.270 Publisher: EA4EPQ

Authors and affiliations

A. Cuña(1,2), E. L. da Silva(2), M. R. Ortega(2), C. Radtke(3), N. Tancredi(1), S.C. Amico(4), C. Malfatti(2)
1. Cátedra de Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República. Montevideo. Uruguay
2. LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. Brazil
3. Instituto de Química, Universidade Federal do Rio Grande do Sul Porto Alegre/RS. Brazil
4. LAPOL/DEMAT, Universidade Federal do Rio Grande do Sul. Brazil

Key words

Energy conversion, Energy storage, Direct Ethanol Fuel Cells, Supercapacitor, Biocarbons


[1] F. Beguin, E. Fr.ckowiak. Supercapacitors: Materials, Systems and Applications. Wiley-VCH Verlag GmbH & Co,
Weinheim (2013).
[2] P. Serp, J. L. Figueiredo, Carbon Materials for Catalysis, Wiley, New Jersey (2009).
[3] H. Marsh H., R. Rodriguez-Reinoso F. Activated carbons. Elsevier, Oxford, UK (2006).
[4] P. Kalyani and A. Anitha, Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energy, 2013, Vol. 38, pp. 4034-4045.
[5] A. Cuna, N. Tancredi, J. Bussi, V. Barranco, TA. Centeno, A. Quevedo, JM. Rojo, Influence of wood anisotropy on the Electrical and Electrochemical Performance of Biocarbon Monoliths as Supercapacitor Electrode. Journal of the
Electrochemical Society 2014, Vol. 161, pp. A1806-A1811.
[6] A. Cuna, N. Tancredi, J. Bussi, C. Deiana, MF. Sardella, V. Barranco and JM. Rojo, E. grandis as a biocarbons precursor for supercapacitor electrode application. Waste and Biomass Valorization 2014, Vol. 5, pp. 305-313.
[7] EL. da Silva, MR. Ortega Vega, PS. Correa, A. Cuna, N. Tancredi and CF. Malfatti, Influence of activated carbon
porous texture on catalyst activity for ethanol electrooxidation. International Journal of Hydrogen Energy 2014, Vol. 39 pp. 14760-14767.
[8] A. Garcia-Gomez, P. Miles, TA. Centeno, JM. Rojo, Why Carbon Monoliths are Better Supercapacitor Electrodes than Compacted Pellets. Electrochem Solid-State Lett 2010, Vol.13, pp. A112-A114.
[9] A. Amaya, N. Medero, N. Tancredi, H. Silva, C. Deiana, Activated carbon briquettes from biomass materialsh.
Bioresource Technology 2007, Vol. 98, pp. 1635-1641.
[10] S. Lowell, J. E. Shields. Powder Surface Area and Porosity, Chapman and Hall Ltd, London (1984).
[11] F. Stoeckli, TA. Centeno, Optimization of the characterization of porous carbons for supercapacitors. J. Mater. Chem. A 2013, Vol. 1, pp. 6865-6873.
[12] D28 Committee. Test Method for Total Ash Content of Activated Carbon. ASTM International; 2011.
[13] PS. Correa, EL. Silva, RF. Da Silva, C. Radtke, B. Moreno, E. Chinarro, CF. Malfatti, gEffect of decreasing platinum amount in Pt.Sn.Ni alloys supported on carbon as electrocatalysts for ethanol electrooxidation. Int J Hydrog
Energy 2012, Vol. 37, pp. 9314.9323.
[14] M. Carmo, AR. dos Santos, JGR. Poco, M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications. J Power Sources 2007, Vol. 173, pp. 860.866.
[15] MC. Liu, LB. Kong, P. Zhang, YC. Luo, K. Long, Porous wood carbon monolith for high- performance
supercapacitors. Electrochim Acta 2012, Vol. 60, pp. 443-448.
[16] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, et al. Pt based anode catalysts for direct ethanol fuel cellsh. Appl Catal B Environ 2003, Vol. 46, pp. 273.285.
[17] M. Chatterjee, A. Chatterjee, S. Ghosh, I. Basumallick, Electro-oxidation of ethanol and ethylene glycol on
carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochimica Acta 2009, Vol. 54, pp. 7299.7304.
[18] F. Colmati, E. Antolini, ER. Gonzalez, Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: Effect of thermal treatment. Appl Catal B Environ 2007, Vol. 73, pp.106.115.
[19] JH. Kim, SM. Choi, SH. Nam, MH. Seo, SH. Choi, WB. Kim, Influence of Sn content on PtSn/C catalysts for
electrooxidation of C1.C3 alcohols: Synthesis, characterization, and electrocatalytic activity. Appl Catal B
Environ 2008, Vol. 82, pp. 89.102.
[20] JCM. Silva, LS. Parreira, RFB. De Souza, ML. Calegaro, EV. Spinace, A. Oliveira Neto, MC. Santos, PtSn/C
alloyed and non-alloyed materials: Differences in the ethanol electro oxidation reaction pathwaysh. Applied Catalysis B: Environmental 2011, Vol. 110, pp. 141.147.
[21] JM. Leger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochimica Acta 2005, Vol. 50, pp. 5118.5125.
[22] P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis. Royal Social of Chemistry, Londres (2015).
[23] L. Calvillo, V. Celorrio, R. Moliner, AB. Garcia, I. Camean, MJ. Lazaro. Comparative study of Pt catalysts supported on different high conductive carbon materials for methanol and ethanol oxidation. Electrochimica Acta 2013, Vol. 102, pp. 19.27.
[24] MC. Roman-Martinez, D. Cazorla-Amoros, A. Linares-Solano, C. De Lecea, S-M. Yamashita, gH and Anpo M.
Metal Support Interaction in Pt/C Catalysts. Influence of the support surface chemistry. Carbon 1995, Vol. 33, pp.3.13.
[25] A. Sliwak, B. Grzyb, J. Cwik.a, G. Gryglewicz, Influence of wet oxidation of herringbone carbon nanofibers on the
pseudocapacitance effect. Carbon 2013, Vol. 64, pp. 324-333.
[26] BE. Conway. Electrochemical supercapacitors. Scientific Fundamentals and Technological applications. Kluwer
Academic/Plenum Publishers; New York (1999).
[27] V. Ruiz, C. Blanco, R. Santamaria, JM. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, F.
Rodriguez-Reinoso, An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, Vol.
47, pp. 195-200.