cabecera

 
 

Models for Fault Current Limiters based on Superconductor Materials

A. Etxegarai, I. Zamora, G. Buigues, V. Valverde, E. Torres, P. Eguia

2016/5/20

Abstract

The present paper introduces the main electric applications of superconducting materials, focusing on Superconducting Fault Current Limiters (SFCL). In recent years, short-circuit current values have increased, mainly due to a higher penetration of distributed generation. Fault Current
Limiters (FCL) based on superconductor materials can provide one of the most promising solutions for limiting those fault currents. Nowadays, research focuses mainly on resistive SFCLs,
because of size, cost and product maturity. Several modelling approaches for resistive type current limiters, as proposed in the literature, are reviewed hereby.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 14)
Pages:284-289 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/05/04
REF:293-16 Issue Date: May 2016
DOI:10.24084/repqj14.293 Publisher: EA4EPQ

Authors and affiliations

A. Etxegarai, I. Zamora, G. Buigues, V. Valverde, E. Torres, P. Eguia
Department of Electrical Engineering, Faculty of Engineering of Bilbao, UPV/EHU. Bilbao. Spain

Key words

Superconductivity, Superconducting Fault Current Limiter (SFCL), modelling, simulation.

References

[1] A. Morandi, S. Brisigotti, G. Grasso, and R. Marabotto, ‘Conduction Cooling and Fast Recovery in -Based DC Resistive SFCL’, IEEE Trans. Appl. Supercond., vol. 23, no. 5, pp. 5604409–5604409, Oct. 2013.
[2] S. Eckroad, ‘Superconducting Fault Current Limiters’, Electric Power Research Institute EPRI, Palo Alto, California, 1017793, 2009.
[3] G.-H. Lee, K.-B. Park, J. Sim, Y.-G. Kim, I.-S. Oh, O.-B. Hyun, l and B.-W. Lee, ‘Hybrid Superconducting Fault Current Limiter of the First Half Cycle Non-Limiting Type’, IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 1888–1891, Jun. 2009.
[4] W. Paul, M. Chen, M. Lakner, J. Rhyner, D. Braun, W. Lanz, and M. Kleimaier, Superconducting Fault Current Limiter Applications, technical and economical benefits, simulations and test results’, presented at the Session CIGRE 2010, Paris, France.
[5] L. Ye and K.-P. Juengst, ‘Modeling and simulation of high, temperature resistive superconducting fault current limiters’,. IEEE Trans. Appl. Supercond., vol. 14, no. 2, pp. 839–842, Jun. 2004.
[6] J. Langston, M. Steurer, S. Woodruff, T. Baldwin, and J. Tang, ‘A generic real-time computer Simulation model for
Superconducting fault current limiters and its application in system protection studies’, IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2090–2093, Jun. 2005.
[7] S. M. Blair, C. D. Booth, and G. M. Burt, ‘Current -Time Characteristics of Resistive Superconducting Fault Current Limiters’, IEEE Trans. Appl. Supercond., vol. 22, no. 2, pp. 5600205–5600205, Apr. 2012.
[8] S. Nemdili and S. Belkhiat, ‘Modeling and Simulation of Resistive Superconducting Fault-Current Limiters’, J. Supercond. Nov. Magn., vol. 25, no. 7, pp. 2351–2356, Jun. 2012.
[9] B. C. Sung, D. K. Park, J.-W. Park, and T. K. Ko, ‘Study on a Series Resistive SFCL to Improve Power System Transient Stability: Modeling, Simulation, and Experimental Verification’, IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2412–2419, Jul. 2009.
[10] H. K. (Criepi) and S. Torii(Criepi), ‘Setting method of parameters for SN transition fault current limiter into 6.6kV distribution system’, J. Phys. Conf. Ser., vol. 97, no. 1, p. 012322, 2008.
[11] I. Muta, T. Doshita, T. Nakamura, T. Egi, and T. Hoshino, ‘Influences of superconducting fault current limiter (SFCL) on superconducting generator in one-machine double-line system’, IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 2206–2209, Jun. 2003.
[12] Y. Ye, L. Xiao, H. Wang, and Z. Zhang, ‘Research on Resistor Type Superconducting Fault Current Limiter in Power System’, in Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, 2005, pp. 1–6.
[13] P. E. Sutherland, ‘Analytical model of superconducting to normal transition of bulk high Tc superconductor BSCCO-2212’, IEEE Trans. Appl. Supercond., vol. 16, no. 1, pp. 43–48, Mar. 2006.
[14] F. Roy, B. Dutoit, F. Grilli, and F. Sirois, ‘Magneto-Thermal Modeling of Second-Generation HTS for Resistive Fault Current Limiter Design Purposes’, IEEE Trans. Appl. Supercond., vol. 18, no. 1, pp. 29–35, Mar. 2008.
[15] P. J. C. Branco, M. E. Almeida, and J. A. Dente, ‘Proposal for an RMS thermoelectric model for a resistive-type superconducting fault current limiter (SFCL)’, Electr. Power Syst. Res., vol. 80, no. 10, pp. 1229–1239, Oct. 2010.
[16] Elizaveta Egorova, Himanshu Bahirat, Bruce A. Mork, Warren F. Perger, and Matthew Holcomb, ‘EMTP-ATP Modeling of a Resistive Superconducting Fault Current Limiter’, presented at the International Conference on Power Systems Transients (IPST2013, Vancouver, Canada, 2013.
[17] J. Y. Zhang, Z. Q. Wei, H. Hong, W. Z. Gong, and Y. Xin, ‘Electromagnetic design of saturated iron core SFCL’, in 2011 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2011, pp. 305–308.
[18] H. Heydari, A. A. Abrishami, and M. M. Bidgoli, ‘Comprehensive Analysis for Magnetic Shield Superconducting Fault Current Limiters’, IEEE Trans. Appl. Supercond., vol. 23, no. 5, pp. 5604610–5604610, Oct. 2013.
[19] M. Majka, J. Kozak, S. Kozak, G. Wojtasiewicz, and T. Janowski, ‘Design and Numerical Analysis of the 15 kV Class Coreless Inductive Type SFCL’, IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, Jun. 2015.
[20] S. Kozak, T. Janowski, B. Kondratowicz-Kucewicz, J. Kozak, and G. Wojtasiewicz, ‘Experimental and numerical analysis of energy losses in resistive SFCL’, IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2098–2101, Jun. 2005.
[21] J. B. Na, Y. J. Kim, J. Y. Jang, K. S. Ryu, Y. J. Hwang, S. Choi, and T. K. Ko, ‘Design and Tests of Prototype Hybrid Superconducting Fault Current Limiter With Fast Switch’, IEEE Trans. Appl. Supercond., vol. 22, no. 3, pp. 5602604–5602604, Jun. 2012.
[22] Y. J. Kim, D. K. Park, S. E. Yang, W. C. Kim, M. C. Ahn, Y. S. Yoon, N. Y. Kwon, H. Lee, and T. K. Ko, ‘Analytical Design Method of High-Tc Coated Conductor for a Resistive Superconducting Fault Current Limiter Using Finite Element Method’, IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 1172– 1176, Jun. 2010.
[23] Y. Chen, S. Li, J. Sheng, Z. Jin, Z. Hong, and J. Gu, ‘Experimental and Numerical Study of Co-ordination of Resistive-Type Superconductor Fault Current Limiter and Relay Protection’, J. Supercond. Nov. Magn., vol. 26, no. 11, pp. 3225– 3230, Apr. 2013.
[24] O. Naeckel, J. Langston, M. Steurer, F. Fleming, S. Paran, C. Edrington, and M. Noe, ‘Power Hardware-in-the-Loop Testing of an Air Coil Superconducting Fault Current Limiter Demonstrator’, IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–7, Jun. 2015.
[25] L. Graber, T. Chiocchio, J. Kvitkovic, S. Pamidi, M. Steurer, and A. Usoskin, ‘Finite Element Model of a Superconducting Fault Current Limiter Calibrated by Hardware-in-the-Loop Measurements’, IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 1–5, Jun. 2014.

 
pie