Production of synthesis gas from dry reforming of propane with carbon dioxide over ceria-promoted nickel foam catalysts

J. Karuppiah, E. Linga Reddy, M.S.P. Sudhakaran, S.B. Lee



A series of nickel foam supported cerai catalysts (ceria/NiF) for dry reforming of propane with carbon dioxide were prepared and their performance were evaluated at temperatures in the range of 520-600°C. Among the catalysts examined the 4 wt.% CeO2/NiF exhibited better low-temperature activity for the DRP, which is attributed to the formation of wellisolated nanosize CeO2 particles and highly reducible metal oxide species over the NiF support. The XPS and temperature programmed reduction (TPR) data also supported the incorporation of ceria into the NiO surface layer formed over NiF support, which was substantially higher in 4% CeO2/NF catalyst. Due to these favorable properties, the 4 wt.% CeO2/NiF could be considered as
an excellent catalyst for DRP.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14
Pages:742-747 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/5/4
REF:443-16 Issue Date: May 2016
DOI:10.24084/repqj14.443 Publisher: EA4EPQ

Authors and affiliations

J. Karuppiah(1), E. Linga Reddy(2), M.S.P. Sudhakaran(1), S.B. Lee(1)
1. Department of Chemical and Biological Engineering. Jeju National University, Jeju. Korea
2. Department of Chemical Engineering, Kyungpook National University, Daegu. Korea

Key words

Syngas, Propane reforming, Nickel foam, Ceria, Catalytic activity


[1] A. Jha, D.-W. Jeong, W.-J. Jang, C. V. Rode and H.-S. Roh,
RSC Advances, 2015, 5, 1430-1437.
[2] L. B. Råberg, M. B. Jensen, U. Olsbye, C. Daniel, S. Haag, C. Mirodatos and A. O. Sjåstad, Journal of Catalysis, 2007, 249,
[3] X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang and
M. Liu, Nano Energy, 2015, 11, 154-161.
[4] J. Xiong, X. Dong, Y. Dong, X. Hao and S. Hampshire,
International Journal of Hydrogen Energy, 2012, 37, 12307-
[5] J. Karuppiah and Y. S. Mok, Int. J. Hydrogen Energy, 2014, 39, 16329-16338.
[6] H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang and Y. Luo, Nanoscale Res Lett, 2014, 9, 1-7.
[7] J. Zhang, H. Yang, S. Wang, W. Liu, X. Liu, J. Guo and Y. Yang, Cryst.Eng. Comm, 2014, 16, 8777-8785.
[8] C. Sun, J. Sun, G. Xiao, H. Zhang, X. Qiu, H. Li and L. Chen, J. Phys. Chem. B, 2006, 110, 13445-13452.
[9] L. De Los Santos Valladares, A. Ionescu, S. Holmes, C. H. W. Barnes, A. Bustamante Domínguez, O. Avalos Quispe, J. C. González, S. Milana, M. Barbone, A. C. Ferrari, H. Ramos and Y. Majima, J. Vac. Sci. Technol B, 2014, 32, 051808.
[10] R. E. Dietz, W. F. Brinkman, A. E. Meixner and H. J. Guggenheim, Phys. Rev. Lett, 1971, 27, 814-817.
[11] R. E. Dietz, G. I. Parisot and A. E. Meixner, Phys. Rev. B: Condens. Matter, 1971, 4, 2302-2310.
[12] P. A. Fleury and R. Loudon, Phys. Rev, 1968, 166, 514-530.
[13] P. Sudarsanam, B. Mallesham, D. N. Durgasri and B. M. Reddy, RSC Advances, 2014, 4, 11322-11330.
[14] B. M. Reddy, P. Bharali, P. Saikia, A. Khan, S. Loridant, M. Muhler and W. Grünert, Phys. Chem. C, 2007, 111, 1878-1881.
[15] S. Rossignol, F. Gerard, D. Mesnard, C. Kappenstein and D. Duprez, J. Mater. Chem, 2003, 13, 3017-3020.
[16] S. Mahammadunnisa, P. Manoj Kumar Reddy, N. Lingaiah and C. Subrahmanyam, Catal. Sci. Technol, 2013, 3, 730-736.
[17] A. Zawadzki, J. D. A. Bellido, A. F. Lucrédio and E. M. Assaf, Fuel Process. Technol, 2014, 128, 432-440.
[18] J. Marrero-Jerez, A. Murugan, I. S. Metcalfe and P. Núñez, Ceram. Int, 2014, 40, 15175-15182.
[19] Y. Wei, H. Wang, K. Li, X. Zhu and Y. Du, J. Rare Earths, 2010, 28, Supplement 1, 357-361.
[20] L. Liu and L. Hong, Appl. Catal., A, 2013, 459, 89-96.
[21] W. Shan, M. Luo, P. Ying, W. Shen and C. Li, Appl. Catal., A, 2003, 246, 1-9.
[22] J. Hu, C. Yu, Y. Bi, L. Wei, J. Chen and X. Chen, Chinese J. Catal, 2014, 35, 8-20.
[23] B. Zapata, M. A. Valenzuela, J. Palacios and E. Torres-Garcia, Int. J. Hydrogen Energy, 2010, 35, 12091-12097.
[24] L. Pino, A. Vita, F. Cipitì, M. Laganà and V. Recupero, Appl. Catal., B, 2011, 104, 64-73.
[25] V. Balcaen, R. Roelant, H. Poelman, D. Poelman and G. B. Marin, Catal. Today, 2010, 157, 49-54.
[26] A. Serrano-Lotina and L. Daza, Int. J. Hydrogen Energy, 2014, 39, 4089-4094.
[27] A. Pantazidis, S. A. Bucholz, H. W. Zanthoff, Y. Schuurman and C. Mirodatos, Catal. Today, 1998, 40, 207-214.
[28] S. Zhang, S. Muratsugu, N. Ishiguro and M. Tada, ACS Catalysis, 2013, 3, 1855-1864.
[29] D. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna and Y. Yang, J. Catal, 2009, 266, 380-390.