cabecera

 
 

Comparison of Fuzzy and Neuro-Fuzzy Controllers for Maximum Power Point Tracking of Photovoltaic Modules

Jemaa AYMEN, Zarrad ONS, Aurelian CRÃCIUNESCU, Mihai POPESCU

2016/5/20

Abstract

The paper make a comparison among two control methods for maximum power point tracking (MPPT) of a photovoltaic (PV) system under varying irradiation and temperature conditions: the fuzzy control method and the neuro-fuzzy control method. Both techniques have been simulated and analyzed by using Matlab/Simulink software. The power transitions at varying irradiation and temperature conditions are observed and the power tracking time realized by the fuzzy logic controller against the neuro fuzzy logic controller has been evaluated.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14
Pages:796-800 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/5/4
REF:465-16 Issue Date: May 2016
DOI:10.24084/repqj14.465 Publisher: EA4EPQ

Authors and affiliations

Jemaa Aymen(1), Zarrad Ons(1), Aurelian Craciunescu(2), Mihai Popescu(2)
1. L'École Nationale d'Ingénieurs de Monastir, Université de Monastir.Tunisia
2. Electrical Engineering Faculty, University Politehnica of Bucharest. Romania

Key words

Photovoltaic Module; MPPT; Fuzzy Logic Controller; Neuro-Fuzzy Logic Controller; Matlab/Simulink models.

References

[1] Y. T. Hsiao; C. H. Chen; "Maximum power tracking for photovoltaic power system," Industry Applications Conference, vol.2, pp. 1035-1040, 2002.
[2] V. Salas, E. Ol´ýas, A. Barrado, and A. L´azaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp.1555–1578, 2006.
[3] Kottas, T.L.; Boutalis, Y.S.; Karlis, A.D.; "New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks," IEEE Transactions on Energy Conversion, vol.21, no.3, pp.793-803, Sept. 2006.
[4] T. Esram, P. L. Chapman, ”Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol.22, no.2, pp.439-449, June 2007.
[5] A. Dolara, R. Faranda, S. Leva., ”Energy Comparison of Seven MPPT Techniques for PV Systems”, Journal of Electromagnetic Analysis and Applications, vol.1, no.3, pp.152-162, Sep 2009.
[6] M.Hatti, IEEE Member, A. Meharrar, M.Tioursi; "Novel Approach of Maximum Power Point Tracking for Photovoltaic Module Neural Network based",2-4 November 2010, Ghardaïa, Algeria.
[7] Revankar, P.S.; Gandhare, W.Z.; Thosar, A.G.; "Maximum Power Point Tracking for PV Systems Using MATALAB/ SIMULINK," Second International Conference on Machine Learning and Computing (ICMLC), pp.8-11, 9-11 Feb. 2010.
[8] H. N. Zainudin and S. Mekhilef, “Comparison study of maximum power point tracker techniques for PV systems,” in Proceedings of the 14th International Middle East Power Systems Conference (MEPCON ’10), Cairo, Egypt, 2010.
[9] Seok-Il Go, Seon-Ju Ahn, Joon-Ho Choi, Won-Wook Jung, Sang-Yun Yun, Il-Keun Song, "Simulation and Analysis of Existing MPPT Control Methods in a PV Generation System", Journal of International Council on Electrical Engineering vol.1, no.4, pp.446-451, Oct 2011.
[10] Seok-Il Go, Seon-Ju Ahn, Joon-Ho Choi, Won-Wook Jung, Sang-Yun Yun, Il-Keun Song, "Simulation and Analysis of Existing MPPT Control Methods in a PV Generation System", Journal of International Council on Electrical Engineering vol.1, no.4, pp.446-451, Oct 2011.
[11] A. Panda ,M.K.Pathak, S.P.Srivastava, “Fuzzy Intelligent Controller for the Maximum Power Point Tracking of a Photovoltaic Module at Varying Atmospheric Conditions”, Journal of Energy Technologies and Policy, www.iiste.org, ISSN 2224-3232 (Paper) ISSN 2225-0573 (Online), Vol.1, No.2, 2011.
[12] C. Ben Salah, M. Ouali, "Comparison of Fuzzy Logic and Neural Network in Maximum Power Point Tracker for PV Systems", Elsevier, Electric Power Systems Research, vol.81, pp.43-50, July 2011.
[13] M. Salhi, R. El-Bachtri, "Maximum Power Point Tracker Using Fuzzy Control for Photovoltaic System", International Journal of Research and Reviews in Electrical and Computer Engineering, vol.1, no.2, pp.69-75, June 2011.
[14] H.E.A. Ibrahim, M. Ibrahim, “Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter”, Journal of Energy Technologies and Policy www.iiste.org, ISSN 2224-3232 (Paper) ISSN 2225-0573 (Online), Vol.2, No.6, 2012.
[15] M. M. Algazar, H. Al-Monier, H. A. El-Halim, and M. E. E. K. Salem, “Maximum power point tracking using fuzzy logic control,” International Journal of Electrical Power and Energy Systems, vol. 39, no. 1, pp. 21–28, 2012.
[16] H.E.A. Ibrahim, "Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter", Journal of Energy Technologies and Policy, Vol.2, No.6, 2012, ISSN 2224-3232 (Paper).
[17] M. F. Ansari, S. Chatterji, and A. Iqbal, “Fuzzy logic-based MPPT controllers for three-phase grid-connected inverters,” International Journal of Sustainable Energy, vol. 32, no. 3, 2013.
[18] S. Shamshul Haq, B. Wilson Shyamsunder, G. Mohammad Zameer, "Design and simulation of MPPT algorithm of photovoltaic system using intelligent controller", International Journal of Advanced Scientific and Technical Research, Issue 3 volume 6, Nov.-Dec. 2013 ISSN 2249-9954.
[19] Y. H. Liu, C. L. Liu, J. W. Huang, J. H. Chen, “Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments”, Solar Energy 89, (2013), 42-53.
[20] H. Mahamudul, M. Saad and M. I. Henk, “Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point TrackingAlgorithm”, International Journal of Photoenergy, Vol. 2013, ID 762946, http://dx.doi.org/10.1155/2013/762946.

 
pie