cabecera

 
 

Solar energy: a source for water disinfection in Colombia

Carmen Leonor Barajas Forero

2016/5/20

Abstract

Colombia, due to its geographical position, receives a high solar radiation throughout the year. This implies that the country has great potential for solar energy production, but can also use this resource to enhance the living conditions of its inhabitants by using solar radiation to improve the quality of drinking water.

Mainly in rural areas, the country has serious problems with drinking water for its inhabitants. This generates high morbidity and mortality, especially in children under five.

The main purpose of this preliminary work was to investigate if weather conditions in northeastern Colombia permit to use the sun's energy to disinfect water from water sources which are normally heavily contaminated. The results are encouraging and may lead to establish programs for appropriate use of this technology in areas where the construction of treatment plants very difficult.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14
Pages:868-872 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/5/4
REF:491-16 Issue Date: May 2016
DOI:10.24084/repqj14.491 Publisher: EA4EPQ

Authors and affiliations

Carmen Leonor Barajas Forero
Department of Hydraulic, Fluids and Thermal Sciences. Francisco de Paula Santander University, Cucuta. Colombia

Key words

Colombia, water disinfection, solar energy

References

[1]. UPME, I. (2005). Atlas de Radiación solar de Colombia. Santafé de Bogotá DC: Unidad de Planeación Minero Energética, Ministerio de Minas y Energía.
[2]. CONPES. Consejo Nacional de Política Económica y Social. 2008. Documento 3550. Lineamientos para la formulación de la política integral de salud ambiental con énfasis en los componentes de calidad de aire, calidad de agua y seguridad química. Departamento Nacional de Planeación. Bogotá.
[3]. Larsen, B. (2004). Cost of environmental damage: A socio-economic and environmental health risk assessment. Bogotá: Ministerio de Ambiente, Vivienda y Desarrollo Territoral.
[4]. Ministerio de salud y Protección Social (2014). Informe nacional de la calidad del agua para consumo humano año 2013 con base en el IRCA. Bogotá.
[5]. Acra, A., Karahagopian, Y., Raffoul, Z., & Dajani, R. (1980). Disinfection of oral rehydration solutions by sunlight. The Lancet, 316(8206), 1257-1258.
[6]. Acra, A., Jurdi, M., Mu'allem, H., Karahagopian, Y., & Raffoul, Z. (1990). Water disinfection by solar radiation: assessment and application (No. 66e). International Development Research Centre.
[7]. Oates, P. M., Shanahan, P., & Polz, M. F. (2003). Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti. Water Research, 37(1), 47-54.
[8]. Mbogo, S. A (2008). A novel technology to improve drinking water quality using natural treatment methods in rural Tanzania. Journal of Environmental Health; Mar 2008; 70, 7, 46-50.
[9]. Fisher, M. B., Iriarte, M., & Nelson, K. L. (2012). Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials. Water research, 46(6), 1745-1754.
[10]. Kendricks, M. R., David, J. L., Sisco, T. E., & Surbeck, C. Q. (2013). Solar Disinfection Water Treatment for a Community-Scale System: An Analysis of Design Parameters for Humanitarian Engineering Projects. International Journal for Service Learning in Engineering, 8(1).
[11]. Dessie, A., Alemayehu, E., Mekonen, S., Legesse, W., Kloos, H., & Ambelu, A. (2014). Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia. Journal of Environmental Health Science and Engineering, 12(1), 25.

 
pie