ICREPQ |   AEDIE |   Sponsors |   Links | RE&PQJ-main |  RE&PQJ-papers home

Innovative planning synergies between manufacturing processes and microgrids

C. Gamarra, M. Ortega, E. Montero, J.M. Guerrero



Industrial equipment is evolving towards data gathering and communication, following the Internet of things approach. During last years, different management systems and related standards have been developed, in order to raise the performance of manufacturing processes. But a complete
optimization of a manufacturing process requires a holistic approach, and adopting microgrid architectures can actually empower the optimization of a manufacturing process. In this paper, synergies about microgrids and manufacturing processes planning will be pointed out. Thus, a suitable approach to MG planning for manufacturing companies from a Knowledge Discovery in Databases (KDD) point of view is described.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14
Pages:939-944 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/5/4
REF:526-16 Issue Date: May 2016
DOI:10.24084/repqj14.526 Publisher: EA4EPQ

Authors and affiliations

Carlos Gamarra(1), Margarita Ortega(1),Eduardo Montero(1), J.M. Guerrero(2)
1. Department of Electromechanical Engineering, University of Burgos. EPS. Spain
2. Department of Energy Technology, Aalborg University. Denmark

Key words

Industrial microgrid, planning, Knowledge discovery in databases, data mining


[1] Mattern F, Floerkemeier C. From the internet of computers to the internet of things. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6462 LNCS, 2010, p. 242-59. doi:10.1007/978-3-642-17226-7_15.
[2] Perera C, Liu CH, Jayawardena S, Chen M. A Survey on Internet of Things From Industrial Market Perspective. IEEE Access 2014;2:1660-79. doi:10.1109/ACCESS.2015.2389854.
[3] Bernstein A, Provost F, Hill S. Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification. IEEE Trans Knowl Data Eng 2005;17:503-18. doi:10.1109/TKDE.2005.67.
[4] Matheus CJ, Chan PK, Piatetsky-Shapiro G. Systems for knowledge discovery in databases. IEEE Trans Knowl Data Eng 1993;5:903-13. doi:10.1109/69.250073.
[5] Tsai CW, Lai CF, Chiang MC, Yang LT. Data mining for internet of things: A survey. IEEE Commun Surv Tutorials 2014;16:77-97. doi:10.1109/SURV.2013.103013.00206.
[6] Gandomi A, Haider M. Beyond the hype?: Big data concepts , methods , and analytics. Int J Inf Manage 2015;35:137-44. doi:10.1016/j.ijinfomgt.2014.10.007.
[7] Xiang Z, Schwartz Z, Gerdes JH, Uysal M. What can big data and text analytics tell us about hotel guest experience and satisfaction?? Int J Hosp Manag 2015;44:120-30. doi:10.1016/j.ijhm.2014.10.013.
[8] Apte C. Data mining: an industrial research perspective. IEEE Comput Sci Eng 1997;4:6-9. doi:10.1109/99.609825.
[9] Li J. On optimal rule discovery. IEEE Trans Knowl Data Eng 2006;18:460-71. doi:10.1109/TKDE.2006.1599385.
[10] Espejo PG, Ventura S, Herrera F. A survey on the application of genetic programming to classification. IEEE Trans Syst Man Cybern Part C Appl Rev 2010;40:121-44. doi:10.1109/TSMCC.2009.2033566.
[11] Díaz Arevalo JL, Pérez García R. Estado del arte en la utilización de tecnicas avanzadas para la busqueda de información no trivial a partir de datos en los sistemas de abastecimiento de agua potable n.d.
[12] Shin CK, Yun UT, Kim HK, Park SC. A hybrid approach of neural network and memory-based learning to data mining. IEEE Trans Neural Netw 2000;11:637-46. doi:10.1109/CDC.2014.7039892.
[13] De La Iglesia B, Reynolds A. The use of meta-heuristic algorithms for data mining. Proc 1st Int Conf Inf Commun Technol ICICT 2005 2005;2005:34-44. doi:10.1109/ICICT.2005.1598541.
[14] Kulkarni R V, Member S, Förster A, Venayagamoorthy GK. Computational Intelligence in Wireless Sensor Networks?: A Survey. Commun Surv Tutorials, IEEE 2011;13:68-96. doi:10.1109/SURV.2011.040310.00002.
[15] Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CAC. A survey of multiobjective evolutionary algorithms for data mining: Part i. IEEE Trans Evol Comput 2014;18:4-19. doi:10.1109/TEVC.2013.2290086.
[16] Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C a C. Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans Evol Comput 2014;18:25-35. doi:10.1109/TEVC.2013.2290082.
[17] Cios KJ, Kurgan LA. Advanced Techniques in Knowledge Discovery and Data Mining. 2005. doi:10.1007/1-84628-183-0.
[18] European Commision. Call FoF February 2015. Web Page 2015. (accessed February 20, 2015).
[19] Bi Z, Xu L Da, Wang C. Internet of things for enterprise systems of modern manufacturing. IEEE Trans Ind Informatics 2014;10:1537-46. doi:10.1109/TII.2014.2300338.
[20] Dutta D, Bose I. Managing a big data project: The case of Ramco Cements limited. Intern J Prod Econ 2014. doi:10.1016/j.ijpe.2014.12.032.
[21] Köksal G, Batmaz I, Testik MC. A review of data mining applications for quality improvement in manufacturing industry. Expert Syst Appl 2011;38:13448-67. doi:10.1016/j.eswa.2011.04.063.
[22] Gao L-HGL-H, Luo S-XLS-X, Qiu J-QQJ-Q, Li F-CLF-C, Ran H-CRH-C. Data mining on a kind of complex industrial process. Proc 2003 Int Conf Mach Learn Cybern (IEEE Cat No03EX693) 2003;1:105-7. doi:10.1109/ICMLC.2003.1264451.
[23] Krömer P, Platos J, Snášel V. Mining multi-class industrial data with evolutionary fuzzy rules. 2013 IEEE Int Conf Cybern CYBCONF 2013 2013:191-6. doi:10.1109/CYBConf.2013.6617453.
[24] Zhuo CZC, Bingtu YBY, Yinglong WYW, Zefeng SZS. A new model for the industrial process control based on Data Mining. 2008 Chinese Control Decis Conf 2008:1368-70. doi:10.1109/CCDC.2008.4597541.
[25] Kusiak A, Song Z. Combustion efficiency optimization and virtual testing: A data-mining approach. IEEE Trans Ind Informatics 2006;2:176-84. doi:10.1109/TII.2006.873598.
[26] Song Z, Kusiak A. Constraint-based control of boiler efficiency: A data-mining approach. IEEE Trans Ind Informatics 2007;3:73-83. doi:10.1109/TII.2006.890530.
[27] Kusiak a., Zhe Song. Clustering-Based Performance Optimization of the Boiler–Turbine System. IEEE Trans Energy Convers 2008;23:651-8. doi:10.1109/TEC.2007.914183.
[28] Weber P, Bordbar B, Tiño P. A Framework for the Analysis of Process Mining Algorithms.pdf. IEEE Trans Syst Man Cybern Syst 2013;43:303-17. doi:10.1109/TSMCA.2012.2195169.
[29] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010;22:1345-59. doi:10.1109/TKDE.2009.191.
[30] Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A. Remote sensing big data computing?: Challenges and opportunities. Futur Gener Comput Syst 2014. doi:10.1016/j.future.2014.10.029.
[31] Bui N, Castellani AP, Casari P, Zorzi M. The internet of energy: A web-enabled smart grid system. IEEE Netw 2012;26:39-45. doi:10.1109/MNET.2012.6246751.
[32] Leif Hanrahan B, Lightbody G, Staudt L, Leahy PG. A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation. Renew Sustain Energy Rev 2014;31:860-9. doi:10.1016/j.rser.2013.12.016.
[33] Bracco S, Delfino F, Pampararo F, Robba M, Rossi M. A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators. Energy 2014;64:912-22. doi:10.1016/
[34] Soshinskaya M, Crijns-graus WHJ, Meer J Van Der, Guerrero JM. Application of a microgrid with renewables for a water treatment plant. Appl Energy 2014;134:20-34. doi:10.1016/j.apenergy.2014.07.097.
[35] Overturf MC, Chrosny WM, Stine R. Energy Sufficiency Kaizen Achieving Zero Energy Cost and Variance with Sufficiency-inclusive Private Energy Portfolios. Distrib Gener Altern Energy J 2011;26:36-56. doi:10.1080/21563306.2011.10462203.
[36] Asano H, Bando S. Economic evaluation of microgrids. IEEE Power Energy Soc 2008 Gen Meet Convers Deliv Electr Energy 21st Century, PES 2008:1-6. doi:10.1109/PES.2008.4596603.
[37] Morris GY, Abbey C, Wong S, Joos G. Evaluation of the costs and benefits of Microgrids with consideration of services beyond energy supply. IEEE Power Energy Soc Gen Meet 2012:1-9. doi:10.1109/PESGM.2012.6345380.
[38] Vallem MR, Mitra J. Siting and sizing of distributed generation for optimal microgrid architecture. Proc. 37th Annu. North Am. Power Symp. 2005, vol. 2005, 2005, p. 611-6. doi:10.1109/NAPS.2005.1560597.
[39] Sun C. Sizing of hybrid energy storage system in independent microgrid based on BP neural network. 2nd IET Renew Power Gener Conf (RPG 2013) 2013:3.45-3.45. doi:10.1049/cp.2013.1851.