

Application
of generalized nonactive power theory for parallel hybrid compensation
of periodic and nonperiodic disturbances
Zdenìk Muller, Jan Švec,
Josef Tlustý, and Viktor Valouch
2016/5/20

Abstract
A strategy of decomposition of detrimental
current components in electric power systems is presented. The method
is based on the nonactive power theory with different averaging time
intervals. These individual current components can be used as the reference
signals for the devices compensating periodic as well as nonperiodic
and stochastic currents generated by nonlinear unbalanced loads connected
to an unsymmetrical nonsinusoidal voltage power source. The use of an
appropriate set of parallel compensation devices for mitigating individual
detrimental load current components with different dynamics can lead to
the substantial reduction of the power rating and cost of such a hybrid
compensator.
Published in: Renewable Energy
& Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14 
Pages:979983 
Date of Publication: 2016/5/20 
ISSN: 2172038X 
Date of Current Version:2016/5/4 
REF:54316 
Issue Date: May 2016 
DOI:10.24084/repqj14.543 
Publisher: EA4EPQ 
Authors and affiliations
Martin Cernan, Zdenek Muller, Jan Svec, Josef Tlustý,
Viktor Valouch
Department of Electrical Power Engineering. Faculty of Electrical Engineering,
CTU in Prague. Czech Republic
Key words
Generalized nonactive power theory, detrimental current
components, simulation, electric power system, parallel
hybrid compensation.
References
[1] H. Akagi, Y. Kazanawa, A. Nabae: Instantaneous reactive
power compensators comprising switching devices without energy storage
components. IEEE Trans. Ind. Appl., Vol. IA20, No. 3, pp. 625630, May/June
1984.
[2] W. le Roux, J. D. van Wyk: Evaluation of Residual Network Distortion
during Compensation According to the "Instantaneous Power Theory".
ETEP, Vol. 8, No. 5, pp. 337344, September/October 1998.
[3] L. S. Czarnecki: On some misinterpretations of the instantaneous reactive
power pq theory. IEEE Trans. on Power Electronics, Vol. 19, No. 3, pp.
828836, 2004.
[4] L. S. Czarnecki: Effect of Supply Voltage Asymmetry on IRP pq  Based
Switching Compensator Control. IET on Power Electronics, Vol. 3, No. 1,
pp. 1117, 2010.
[5] Horn, L. A. Pittorino, and J. H. R. Enslin: Evaluation
of active power filter control algorithms under nonsinusoidal and unbalanced
conditions. Proc.7th Int. Conf. Harmonics and Quality Power, Oct. 1618,
1996, pp. 217224.
[6] H. Kim, F. Blaabjerg, B. BakJensen, J. Choi: Instantaneous Power
Compensation in ThreePhase Systems by Using pqr Theory. IEEE Trans.
on Power Electronics, Vol. 17, No. 5, pp. 701710, September 2002.
[7] F. Z. Peng, J.S. Lai: Generalized instantaneous reactive power theory
for threephase power systems. IEEE Trans. Instrum. Meas., Vol. 45, No.
1, pp. 293297, February 1996.
[8] L. S. Czarnecki: Orthogonal Decomposition of the Currents in a 3phase
Nonlinear Asymmetrical Circuit with a Nonsinusoidal Voltage Source. IEEE
Trans. on Instrument. and Measure, Vol. 37, No. 1, March, 1988.
[9] L. S. Czarnecki: Comparison in Instantaneous Reactive Power pq Theory
with Theory of the Current´s Physical Components. Electrical Engineering,
Vol. 85 (2003), pp. 2128, SpringerVerlag 2002.
[10] F. Z. Peng, L. M. Tolbert: Compensation of NonActive Current in
Power SystemsDefinitions from Compensation Standpoint. IEEE Power Eng.
Society, Summer Meeting, July 1520, Seattle, USA, 2000, pp. 983987.
[11] L. M. Tolbert, T. G. Habetler: Comparison of TimeBased NonAcive
Power Definitions for Active Filtering. IEEE Int. Power Electronics Congress
(CIEP 2000), Acapulco, Mexico, pp. 7379, 1519 October 2000.
[12] L. M. Tolbert, Y. Xu, J. Chen, F. Z. Peng, J. N. Chiasson: Application
of Compensators for NonPeriodic Currents. IEEE PES Conference (PESC),
Acapulco, Mexico, 2003.
[13] Y. Xu, L. M. Tolbert, F. Z. Peng, J. N. Chiasson, J. Chen: CompensationBased
NonActive Power Definition. IEEE POWER ELECTRONICS LETTERS, Vol. 1, No.
2, pp. 4550, June 2003.
[14] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell, F. Z. Peng:
Active Filter Implementation Using a Generalized Nonactive Power Theory.
IEEE IAS Conf., 2006, pp. 153160.
[15] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell, F. Z. Peng:
A Generalised Instantaneous NonActive Power Theory for STATCOM. IET Elect.
Power Appl. 1., (2007), pp. 853861.
[16] Y. Xu, L. M. Tolbert, J. D. Kueck, D. T. Rizy: Voltage and Current
Unbalance Compensation Using a Parallel Active Filter. IEEE PESC, Orlando,
USA, 2007, pp. 29192925
[17] M. Ucar, S. Ozdemir, E. Ozdemir: A fourleg unified seriesparallel
active filter system for periodic and nonperiodic disturbance compensation.
Electric Power Systems Research (2011), doi: 10.1016/j.epsr.2011.01.001.
[18] IEEE Interharmonic Task Force, Cigré 36.05/CIRED 2 CC02 Voltage
Quality Working Group, Interharmonics in power systems, 1997.

