cabecera

 
ICREPQ |   AEDIE |   Sponsors |   Links | RE&PQJ-main |  RE&PQJ-papers home
 

Application of generalized non-active power theory for parallel hybrid compensation of periodic and non-periodic disturbances

Zdenìk Muller, Jan Švec, Josef Tlustý, and Viktor Valouch

2016/5/20

Abstract

A strategy of decomposition of detrimental current components in electric power systems is presented. The method is based on the non-active power theory with different averaging time intervals. These individual current components can be used as the reference signals for the devices compensating periodic as well as non-periodic and stochastic currents generated by nonlinear unbalanced loads connected to an unsymmetrical nonsinusoidal voltage power source. The use of an appropriate set of parallel compensation devices for mitigating individual
detrimental load current components with different dynamics can lead to the substantial reduction of the power rating and cost of such a hybrid compensator.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ),Vol. 1, Nº. 14
Pages:979-983 Date of Publication: 2016/5/20
ISSN: 2172-038X Date of Current Version:2016/5/4
REF:543-16 Issue Date: May 2016
DOI:10.24084/repqj14.543 Publisher: EA4EPQ

Authors and affiliations

Martin Cernan, Zdenek Muller, Jan Svec, Josef Tlustý, Viktor Valouch
Department of Electrical Power Engineering. Faculty of Electrical Engineering, CTU in Prague. Czech Republic

Key words

Generalized non-active power theory, detrimental current components, simulation, electric power system, parallel
hybrid compensation.

References

[1] H. Akagi, Y. Kazanawa, A. Nabae: Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl., Vol. IA-20, No. 3, pp. 625-630, May/June 1984.
[2] W. le Roux, J. D. van Wyk: Evaluation of Residual Network Distortion during Compensation According to the "Instantaneous Power Theory". ETEP, Vol. 8, No. 5, pp. 337-344, September/October 1998.
[3] L. S. Czarnecki: On some misinterpretations of the instantaneous reactive power p-q theory. IEEE Trans. on Power Electronics, Vol. 19, No. 3, pp. 828-836, 2004.
[4] L. S. Czarnecki: Effect of Supply Voltage Asymmetry on IRP p-q - Based Switching Compensator Control. IET on Power Electronics, Vol. 3, No. 1, pp. 11-17, 2010.
[5] Horn, L. A. Pittorino, and J. H. R. Enslin: Evaluation of active power filter control algorithms under non-sinusoidal and unbalanced conditions. Proc.7th Int. Conf. Harmonics and Quality Power, Oct. 16-18, 1996, pp. 217-224.
[6] H. Kim, F. Blaabjerg, B. Bak-Jensen, J. Choi: Instantaneous Power Compensation in Three-Phase Systems by Using p-q-r Theory. IEEE Trans. on Power Electronics, Vol. 17, No. 5, pp. 701-710, September 2002.
[7] F. Z. Peng, J.-S. Lai: Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans. Instrum. Meas., Vol. 45, No. 1, pp. 293-297, February 1996.
[8] L. S. Czarnecki: Orthogonal Decomposition of the Currents in a 3-phase Nonlinear Asymmetrical Circuit with a Nonsinusoidal Voltage Source. IEEE Trans. on Instrument. and Measure, Vol. 37, No. 1, March, 1988.
[9] L. S. Czarnecki: Comparison in Instantaneous Reactive Power p-q Theory with Theory of the Current´s Physical Components. Electrical Engineering, Vol. 85 (2003), pp. 21-28, Springer-Verlag 2002.
[10] F. Z. Peng, L. M. Tolbert: Compensation of Non-Active Current in Power Systems-Definitions from Compensation Standpoint-. IEEE Power Eng. Society, Summer Meeting, July 15-20, Seattle, USA, 2000, pp. 983-987.
[11] L. M. Tolbert, T. G. Habetler: Comparison of Time-Based Non-Acive Power Definitions for Active Filtering. IEEE Int. Power Electronics Congress (CIEP 2000), Acapulco, Mexico, pp. 73-79, 15-19 October 2000.
[12] L. M. Tolbert, Y. Xu, J. Chen, F. Z. Peng, J. N. Chiasson: Application of Compensators for Non-Periodic Currents. IEEE PES Conference (PESC), Acapulco, Mexico, 2003.
[13] Y. Xu, L. M. Tolbert, F. Z. Peng, J. N. Chiasson, J. Chen: Compensation-Based Non-Active Power Definition. IEEE POWER ELECTRONICS LETTERS, Vol. 1, No. 2, pp. 45-50, June 2003.
[14] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell, F. Z. Peng: Active Filter Implementation Using a Generalized Nonactive Power Theory. IEEE IAS Conf., 2006, pp. 153-160.
[15] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell, F. Z. Peng: A Generalised Instantaneous Non-Active Power Theory for STATCOM. IET Elect. Power Appl. 1., (2007), pp. 853-861.
[16] Y. Xu, L. M. Tolbert, J. D. Kueck, D. T. Rizy: Voltage and Current Unbalance Compensation Using a Parallel Active Filter. IEEE PESC, Orlando, USA, 2007, pp. 2919-2925
[17] M. Ucar, S. Ozdemir, E. Ozdemir: A four-leg unified series-parallel active filter system for periodic and non-periodic disturbance compensation. Electric Power Systems Research (2011), doi: 10.1016/j.epsr.2011.01.001.
[18] IEEE Interharmonic Task Force, Cigré 36.05/CIRED 2 CC02 Voltage Quality Working Group, Interharmonics in power systems, 1997.

 
pie