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Abstract. In order to solve the problems by the 
perturbations in a voltage distribution system, is necessary the 
detection and identification of the different disturbing incidents: 
short-circuits, harmonic distortions, notchings, voltage dips 
(sags), etc. If it is possible, this detections can be effected 
automatically, without manual intervention, and as fastest as 
possible.  
 
In this work we study the viability of the utilization of the 
wavelet transform for detection, identification and 
characterization of perturbations in a medium and high voltage 
distribution system  [1]. In concrete, the work center the study 
in the voltage sags [2], and the possibility to divided the sags in 
different categories for facility futures studies about possible 
causes or effects[3]. 
          
The implementation of the algorithm was made with the 
‘Wavelets Toolbox’, a toolbox of the MATLAB simulation 
program. 
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1. Introduction 
 
A. Voltage sags 
 
In a voltage distribution system, all the perturbations are 
important in the term ‘power quality’, but the voltage 
sags has a relevant importance due to the number of 
success and the monetary impact they can produce. A 
voltage sag is defined as a sudden reduction (between 10-
90%) in the voltage magnitude (fig. 1), and lasting to 0.5 
cycle to several seconds. 
 
If we work in rms values, the voltage sag is represented 
in fig. 2, where is represented the three characteristics 
parameters: the voltage magnitude (∆V), the time 
duration (∆t) and the shape.  
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Fig.1: Example of  voltage sag 
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Fig. 2: Rms behaviour during a voltage sag  
 
 
Usually, sags present rectangular shape characterized by 
a sudden decay in the instant that a perturbation is 
appeared, followed by a steady state in which the system 
is fault (the magnitude is limited because limit operation 
values are reached in some network devices) and finally 
when protective systems trips magnitude recovers 
original value. Nevertheless, sags can present some 
differences related with cause, network configuration and 
loads that allows a differentiation in classes, associated to 
shapes, with similar attributes. This different classes will 
be studied in chapter 2. 
 
B.  The discrete wavelet transform 
 
The discrete wavelet transform (DWT) is time-frequency 
decomposition of signals especially used to analyse 
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transients. If f(n) is the discrete function, the DWT is 
defined as:   
 

[ ] [ ] [ ]nnfkjC kj∑ Ψ= ,,      (1) 
 
where Ψj,k[n] is a discrete wavelet defined as:  
 

[ ] [ ]knn j
kj −Ψ=Ψ −− 22 2/1

,    (2) 
 
with the parameters  a= 2j and b=2jk. 
 
The implementation of this transform is made by a filter 
scheme, based on a multi resolution analysis or 
pyramidal algorithm [4]. The signal (S) decomposition is 
obtained by  filtering the signal with two complementary 
filters (a lowpass filter and a highpass filter). Output of 
these filters are named the approximation (A) and  detail 
(D).  
The approximation represents a high-scale, low-
frequency components of the signal whereas the detail 
contains a low-scale, high-frequency components of the 
signal.  
 

S 

Filters lowpass 
filter 

highpass 
filter 

A D 

 
Figure 3: The multiresolution analysis 

 
 
This decomposition process can be iterated, with 
successive approximations. Then, in a second level, the 
approximation signal A1 is decomposed, with the same 
method (figure 3), with a new result: A2 and D2. The 
figure 4 shows a decomposition process, where the signal 
is broken down in lower resolution components. Equation 
(3) shows how the original signal can be reconstructed 
from Details and Approximations. 
 
S= A1 + D1= A2 + D2 + D1 = A3 + D3 + D2 + D1         (3) 
 

S 

A1 

A2 D2 

A3 D3 

D1 

 
Figure 4: The wavelet decomposition tree (level 3) 

 
This process can have an undefined number of levels, 
until to obtain a signal with a point. Iteration stops 
according to the type of signal and analysis criteria. The 
decomposition is limited to the number of samples (N) 
because at each decomposition level (J), the number of 
samples is reduced by two. The next expression denotes 
the limit decomposition level (J) to be reached:  
 
                                   2J≤ N                                           (4) 
 
The filters cut-off frequency in each level J can be 
obtained by the expression: 
 
         cut_frq= (sample_frequency) / (2J+1)                 (5) 
 
In general terms, the wavelet decomposition of the signal 
f(n), where n is the number of samples, is: 
 

∑+=+++++=
K

JJJJ nDnAnDnDnDnDnAnf )()()(.....)()()()()( 321

 
where Aj(n) (approximation signal) and Dj(n) (detail 
signal) can be obtained from: 
 

∑ Φ•=
K

KJKJJ nAnA )()( ,,  

      (7) 

∑ Ψ•=
K

KJKJJ nDnD )()( ,,  

 
and  KJ ,Ψ  is the mother wavelet (the highpass filter) 

 KJ ,Φ  is the scale function (the lowpass filter) 

KJA ,  are the approximation coefficients 

KJD ,  are the detail coefficients 
 
with a final relationship: 
 

)()()( 11 nDnAnA JJJ −− +=    (8) 
 
 
2. Expert sags classification 
 
The classification process presented in this work has been 
executed over the data measured in a medium voltage 
network (located in Girona – Spain- and property of the 
utility FECSA-ENDESA).  
 
In this work, we propose to classify sags depending on 
the qualitative shape of sags and to automatize this 
procedure as it was made for a ‘human expert’. Then, we 
can manually classify the sags in four general groups: 
rectangle, trapezium, triangle and arc. 
 
In Table I, we show the qualitative characteristics of each 
type of sags.  
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TABLE I.- Sags Classification 
 
 Drop 

voltage 
Recovery 
voltage 

Duration Voltage 
fall 

Rectangle Very  
fast 

Very  
fast 

Large High 

Trapezium Fast Fast Short Low 
Triangle Fast Slow Short Low 
Arc Low Low ? ? 

 
Figure 5 shows an example (in rms) of these typologies 
of sags extracted from the data base used in the research. 
It is important to observe that the behaviour of the three 
phases can be different during the fall. It only depends of 
the type of fault occurred.  
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Figure 5.1. Rectangle 
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Figure 5.2. Trapezium 
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Figure 5.3. Triangle 
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Figure 5.4. Arc 
 
If we apply table I (with the help of an expert engineer) 
in the data base (with 122 perturbations, 104 of them 
voltage sags), the result of the qualitative classification, 
made for the ‘human expert’, is shown in figure 6. 
 

47
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Trapezium (38)
Triangle (11)
Arc (8)

 
Figure 6: Distribution of voltage sags 

 
3.  Automatic sags classification  
 
A. The  wavelet transform 
 
The process of the identification begin with a wavelet 
transform over the sag, using the wavelet toolbox from 
MATLAB.  
 
In our case, the sample frequency of the signal is 
3200 Hz, then the maximum level of decomposition is 11 
(211= 2048).  This decomposition in 11 levels is showed 
in Table II, where we can found the margins of the  
frequencies of the approximations and details and the 
coefficients of each level. 
 

TABLE II.-  Wavelet Decomposition 
 
 A j,k Number of 

coefficients 
Djk

Level 1 0-800 Hz 1152 800-1600 Hz
Level 2 0-400 Hz 576 400-800 Hz 
Level 3 0-200 Hz 288 200-400 Hz 
Level 4 0-100 Hz 144 100-200 Hz 
Level 5 0-50 Hz 72 50-100 Hz 
Level 6 0-25 Hz 36 25-50 Hz 
Level 7 0-12,5 Hz 18 12,5-25 Hz 
Level 8 0-6,25 Hz 10 6,25-12,5 Hz
Level 9 0-3,12 Hz 6 3,12-6,25 Hz
Level 10 0-1,56 Hz 4 1,56-3,12 Hz
Level 11 0-1 Hz 2 1-1,56 Hz 
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If we return to our data base (with 50 Hz main signal and 
high frequency components, due the perturbations), a 
decomposition until level 4 is enough for the proposed 
analysis. Then, the signal is discomposed by the 
expression: 
 

S= A4 + D4 + D3 + D2 + D1  (9) 
 
The next steep is to select wavelet’s family. This 
selection is very important for the final results, because 
depending of the wavelet selected the characteristics of 
the signal will be detected with best quality and speed. 
In our study, the wavelet’s family used is the Daubechies 
family, in concrete the Db4 [5]. If the coefficient of the 
Daubechies wavelet is low (4 in this case), the number of 
coefficients of the filter are fewer and the time 
localization of the wavelet is better, with best detection of 
the variations in high frequency. 
 
The figure 7 show the graphical result of the wavelet 
transform without perturbation. Is important to remark 
that the process is made over the instantaneous values of 
the signal.  
 
 

 
 

Figure 7. Wavelet transform. 
 
From Table II and expression (1), we can see that d1 and 
d2 represent the high frequencies and d3 and d4 the low 
frequencies. The approximation a4 represent the value of 
the signal between 0 and 100 Hz, where we can to found 
the main signal (50 Hz). 
 
From the analysis, we can found the most of the values of 
the signal in approximation a4, but not in any detail (d1, 
d2, d3, d4), a normal situation in a signal without 
perturbation. 
 
If the analysis is made in one of the rectangular sag 
contained in the data base, the results are different, and 
showed in figure 8. 
 

 
 

Figure 8: The Wavelet transform in a rectangular sag. 
 
We can see that the transient characteristics are 
important, due basically for the fast drop and recovery 
voltage of the sag. This transient is detected in d1and d2 
(2 peaks in each one). The value of the peak are high. 
 
An other example of application is show in figure 9, in 
this case over a triangular sag. In this case, the best 
detection is made in d2: 1 peak  with a important value, 
but, in general, fewer than in the rectangular case. 
 

 
 

Figure 9: The Wavelet transform in a triangular sag. 
 
Basically, and in each case, the extract information of the 
wavelet transform, and convenient processed,  is saved in 
a file, which contain: 
 

- Number of peaks in each discomposed signal 
(d1, d2, d3, d4) 

- Maximum value of the peak in each 
discomposed signal 

- Time of the oscillations  
 
The Table III shows two examples of the data obtained  
for each type of sags. The cells C1, C2, C3 and C4 
contain de number of peaks in each discomposed signal 
(d1, d2, d3 and d4) and the maximum value of the peaks. 
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TABLE III – Example of the data obtained 
 
 C1 C2 C3 C3 

 
Time 
(ms) 

Rectangle 1 
1000 

2 
2100 

2 
6100 

2 
3500 

2014 

Rectangle 2 
2000 

2 
3200 

2 
3100 

0 
-- 

659 

Trapezium 0 
-- 

2 
210 

2 
780 

2 
1400 

832 

Trapezium 3 
3000 

3 
6000 

3 
3000 

0 
-- 

482 

Triangle 2 
7100 

2 
5700 

2 
14000 

2 
8200 

139 

Triangle 0 
-- 

2 
160 

2 
630 

2 
1250 

730 

Arc 1 
290 

3 
1200 

3 
1200 

3 
3900 

980 

Arc 0 
-- 

3 
230 

3 
1200 

3 
1400 

690 

 
This table is only an example of the application of the 
wavelet transform over the 104 sags. Is over the 
completed table where we made a qualitative and 
quantitative study, in order to found a general criteria to 
help in the final classification. 
 
In based of this criteria, we made an algorithm to detect 
and classify the voltage sags.  
 
B. The classification algorithm 
 
The proposal algorithm for the classification is show in 
the next figure 8, divided for each type of sag. The 
algorithm is divided in each type of sag because is easier 
to understand and represented it, but is not the faster 
solution. If we want to obtain a fast algorithm, we must 
to improve the number of decisions, joint the different 
parts and making a new block of decision. 
 

Recta
n 

gle? 

Trape- 
zium?  

Trian- 
gle? 

Arc 

Rectangle Trapeziu m Triangle  Arc No defined  

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

 
 

Figure 10: General classification algorithm 
 
In the next figures we show every block of the general 
algorithm, and we can see that the parameters used in the 
comparators are the obtained from the wavelet transform: 
 
 

ndx= number of peaks in each detail of the 
signal (d1, d2, d3, d4) 

mdx= value of the maximum peak in each detail 
of the signal  (d1, d2, d3, d4). 

t= time (in ms) 
 
In the algorithm contained in each block, we only show 
the affirmative path, in order to simplify the decision’s 
tree. If the result of one of the decisions is negative, the 
algorithm continue in the next block, until to arrive, if it 
is necessary, to the ‘ho defined’ category. 
 
All blocks begin the process with nd4, and continue, if it 
is necessary, with nd3, nd2 and, finally, nd1. We use, 
also, in same cases, md4, md3, md2, md1 and t. 
 

1) Rectangle sag 
 
In this case we use nd4, nd3, nd2, nd1 and md3. After the 
last comparison, we make another one, and divided the 
rectangular sag in two subgroup, short rectangle and long 
rectangle.  

nd3=2 

md3= 
1500 

nd2= 2 

nd1= 0 

nd1=1 
or 

nd1=2 rectangle 
short duration 

rectangle 
long duration 

nd4=0 
or 

nd4=2 

No 

 
 

Figure 11: Rectangular sag 
 

2) Trapezium sag 
 
This case is similar to the anterior,  and also divided the 
sag in two subgroups: trapezium-1 (a normal trapezium) 
and trapezium-2 (a trapezium with rectangular 
components) 
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nd4< 4 

nd3<4 

nd2= 3 

nd1< 4 

md3 
<1500 

nd2=0 
or 

nd2= 2 

nd1<4 
trapezium (1) 

trapezium (2) 

No  

 

Yes  
nd3=2 

 
Figure 12: Trapezium sag 

 
3) Triangle sag 
 

This decision’s tree is also similar to the others, using in 
this case the parameter t.  
 

nd4= 2 

nd3= 2 

md3<1000 
or 

t<400 

nd2= 2 

nd1< 4 

triangle  
 

Figure 13:  Triangle sag 
 

4) Arc sag 
 

Finally, we can see the last sag, similar, also, to the 
others.  
 

nd4= 3 

nd3= 3 

nd2= 2 
or 

nd2= 3 

nd1< 2 

Arc 

 
 

Figure 12: Arc sag 
 

4. Results of the classification 
 
The result of the classification of the all sags, following 
the rules of the algorithm proposed, are showed in the 
Table IV. 
 

TABLE IV. Result of the classification 

 (1) (2) (3) (4) (5) 
Rectangle 47 44 -- 3 93,6%
Trapezium 38 33 -- 5 86,8%
Triangle 11 10 -- 1 90,9%

Arc 8 7 -- 1 87,5%
TOTAL 104 94 -- 10 90,1%

 
 
(1): Number of sags in each category, after the manual 
classification. 
 
(2): Sags classified in each category, when this 
classification is agree with the manual. 
 
(3):  Sags classified in each category, but this 
classification is not agree with the manual. 
 
(4):  Sags of each category classified like ‘no defined’. 
 
(5): % of correct classification 
  
About this result, is important to remark the next points: 
 

- When a sag is not classified in a category, then 
is considered as a ‘no defined’. This occurs less 
than 10% of the cases.  

 
- With this process of classification, a sag is 

classified in his correct category or in the ‘no 
defined’ category, but this method never 
exchange the category of the sags. 
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5.  Conclusion 
 
This paper propose the utilization of the wavelet 
transform for detection and identification of the sags 
produced in a electrical distribution system. 
 
The method proposed classify the sags in four groups: 
 

- Rectangular 
- Trapezium 
- Triangle 
- Arc 

 
using an algorithm with the data obtained from the 
wavelet analysis. The results, showed in table IV, can be 
considered satisfactory. 
 
The algorithm proposed can be modified, with more 
registration of sags. If the data base is bigger, is possible 
adjust the process of decision and to improve the results. 
 
A new steep in this work is link the different sags with 
the causes. It is necessary, for this objective, complete the 
data base with more information about the sags.  
 
Acknowledgement 
 
This work has been partially supported by Spanish 
government and FEDER funds (SECSE, DPI2001-2198) 
and a contract between UdG and Endesa Distribution 
SAU. 
 
References 
 
[1] Lee, C-H. Wang, Y-J. Huang, W-L. “A literature 
survey of wavelets in power engineering applications”. 
2000. Vol 24, No 4, pp. 249-258 
 
[2] Styvaktakis, E. Bollen, M.H.J. and  Gu, Y.H. 
“Classification of power system events: voltage dips”. 
Ninth International Conference on Harmonics and 
Quality of Power, Oct. 2000. Proceedings, Vol.2., pp. 
745 -750  
 
[3] Poisson, O. Rional, P. Meunier, M. “Detection and 
measurement of power quality disturbances using 
wavelets transform”. Transactions on Power Delivery, 
IEEE. July 2000. Vol. 15,  No 3 
 
[4] Mallat, S. “A theory for multiresolution signal 
decomposition: the wavelet representation,” IEEE Pattern 
Anal. and Machine Intell. 1989. Vol. 11, no. 7, pp. 674–
693. 
 
[5] Xiangxun, C. “Wavelet-based detection, localization, 
quantification and classification of short duration power 
quality disturbances”. Power Engineering Society Winter 
Meeting, IEEE. January 2002. Vol. 2 , pp. 931 -936  
 
[6] Styvaktakis, E. Bollen, M.H.J. and  Gu, Y.H. “Expert 
system for classification and analysis of power system 

events”. Transactions on Power Delivery, IEEE. April 
2002. Vol. 17,  No 2, pp. 423-428 
     
[7] Wilkinson, W.A. Cox, M.D. “Discrete wavelet 
analysis of power system transients”. IEEE Transactions 
on Power Systems. Nov. 1996. Vol. 11, No 4. 
 
[8] Pillay, A. Battacharjee. “Application of wavelets to 
model short-term power system disturbances”. IEEE 
Transactions on Power Systems. Nov. 1996. Vol. 11, No 
4. 
 
 
 

https://doi.org/10.24084/repqj02.239 167 RE&PQJ, Vol. 1, No.2, April 2004


	Universitat de Girona
	5.  Conclusion



