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Abstract. A novel method is proposed for designing an 
energy storage system (ESS) which is dedicated to reducing the 
uncertainty of the short term wind power forecast. The 
investigation focuses on the statistical behaviour of the forecast 
error and the state of charge (SOC) of the ESS. This approach 
gives an insight into the influence of the forecast conditions on 
the distribution of SOC. With this knowledge, an optimised 
sizing of the ESS can be done with a well defined uncertainty 
limit. 
One-year power output data measurements and two types for 
forecast were used for this study. In addition, different forecast 
quality degrees are simulated based on the persistence 
approach. With the forecast data, empirical probability density 
functions (pdf's) of the SOC are generated which is the base of 
the proposed method. 
This approach can lead to a considerable reduction of the ESS 
and provides important information about the unserved energy. 
This unserved energy is the remaining forecast error or 
uncertainty. As a consequence, the proposed probabilistic 
method permits the sizing of the energy storage system as a 
function of the desired remaining forecast uncertainty. 
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1. Introduction 
 
In recent years wind energy has grown to an extent that 
its impact on the electric power system becomes relevant 
in many regions [1]–[3]. On the other side, generation 
costs are falling and the participation in short term energy 
markets becomes interesting [4]–[7]. For both cases wind 
power forecasts are crucial. The power system operators 
make reserve allocation plans taking into account wind 
power predictions and in day-ahead energy markets the 
benefit depends on the forecast accuracy. Forecast 
systems are improving steadily but it will remain always 
an uncertainty. Considering the importance of wind 
power forecasts, it becomes clear that the reduction of the 

forecast error is needed for a further development of 
wind power. 
There are very few publications until now on 
probabilistic ESS sizing. The usefulness of ESS in 
electricity markets due to wind power output smoothing 
and reduction of forecast errors is shown in [8]. But here, 
only 9 possible ESS sizes are taken into account 
(combinations of 3 power and 3 energy capacities). Thus, 
the actual sizing is based on simple try and error. A 
similar approach is proposed in [9]. 
An interesting approach is proposed by Barton and 
Infield [10], which is based on spectral analysis of wind 
and solar resources combined with daily load profiles. 
The model is applied to a stand-alone system where the 
storage is calculated for different levels of mean load. 
The ESS is designed for a 24-h time horizon and a worst 
case scenario (“worst day of the year”) is used to obtain 
the ESS size and unserved energy. A drawback of the 
method described in [10] is that there are some 
assumptions like probability distributions of net power to 
and from the store, which are not further specified. 
In [11] and [12] the possible smoothing effect of an ESS 
is simulated with an exponential moving average (EMA), 
which is the same as a first order low pass filter. This 
kind of smoothing with ESS is very similar to the 
persistence approach, used in this paper. to simulate 
forecasts. For simplicity, a simple mean as forecast is 
preferred here as a reference. 
In this study a novel method is proposed for designing an 
energy storage system (ESS) to reduce the forecast 
uncertainty. As point of departure, an ESS can be defined 
which compensates 100% of the uncertainty. This means 
it absorbs any deviation from the forecast and will be 
called here the ‘zero error case’. 
Unfortunately, the energy capacity of such a system 
would get quickly very large with growing forecast 
horizon. It will be shown that if a residual error or 
uncertainty is permitted, power and energy capacity of 
the ESS can be reduced drastically. 
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The presented method quantifies the remaining 
uncertainty as a function of the reduction of the ESS size 
(power and energy capacity) compared to the zero error 
case. To achieve this, at first the statistical patterns of 
forecast errors and the stage of charge (SOC) of the ESS 
are studied for the zero error case. In a second step power 
and energy capacities are reduced and the resulting 
uncertainty is estimated.  
As a summary, the presented method estimates the 
energy amount which is not compensated by the ESS if 
its size is reduced. This can be very useful to find the 
pay-off between income losses due to forecast errors and 
investment costs for the ESS. 
Data from these two forecast methods will be examined 
in this paper and termed as MSE and MCC. These two 
real world scenarios are compared with results from the 
persistence model, proposed by the authors in [13].  
 
2. Forecast data 
 
In this paragraph, the forecast data used for this study is 
briefly described. Real world forecast data is compared 
with simulated forecasts based on the persistence 
approach. 
 
A. Real world forecast data 

In the present work, one-year time series of two different 
wind power forecasts for a wind farm in Portugal are 
analysed. Forecasts from 7 to 72 h ahead are given in 30-
min time steps for an entire year, being updated every 24 
hours. In this study, only the 24 to 48-h ahead forecast is 
used. 
Forecasts for this site are available from two different 
models, which are described more in detail in [14]. 
According to [14], in an adaptive forecast system 
classical Mean Squared Error (MSE) criterion and a 
Maximum Correntropy Criterion (MCC) are used as cost 
function to train a neural network (NN). 
 
B. Online bias-correction 

In this case study, bias correction was needed for real-
world data in order to obtain bias-free data. State of the 
art forecast models include model output statistics (MOS) 
for this purpose.  

In this paper, a very simple method is proposed for 
online-correction of seasonal bias. An exponential 
moving average is applied on observations of the past 7 
days. It can be shown, that for averaging windows of 
approximately 7 days, a payoff is obtained between bias-
correction and forecast quality [15]. 
All real-world datasets are tested on seasonal bias and if 
necessary, are corrected with the averaging method 
described above. A good method to evaluate the effect of 
bias-correction of the forecast data is the representation 
of the cumulated forecast error. This in turn can be inter-
preted as the state of charge (SOC) of an ESS which is 
compensating this error. Such a representation is shown 
in Fig. 1, for the data investigated here. It can be 
observed that the cumulative histograms (cdf) of SOC for 
bias-corrected data is much more similar to the 
persistence forecasts Tx1 and Tx2. Raw forecast data 
show large deviations in SOC which indicates a strong 
bias in the forecast error. 
 
3. Storage sizing methodology 
 
In this paragraph, a probabilistic methodology is 
presented which permits the estimation of ESS size as a 
function of unserved energy. The ESS is designed to 
compensate forecast errors up to a certain extent. The 
level of compensation is expressed by the integral of 
uncompensated forecast errors, termed unserved energy 
Eu. Hence, the unserved energy is defined as the energy 
that cannot be absorbed or supplied by the ESS. This 
value is adopted here as sizing criterion. If Eu is 
expressed as a percentage of total generated wind energy 
Etotal in the observed time interval (e.g. one year), it may 
be defined by 

 [kWh]100%
[kWh]

 
 

u
u

total

Ee
E

= ⋅   (1) 

where Eu is the unserved energy by the ESS and Etotal the 
total generated wind energy. 

Sizing of power and energy requirements is done 
separately and merged at the end by interpolation.  
 
 

 

 
Fig. 1.  Cumulative histograms (cdf) of SOC for different 24-h forecast scenarios, left: persistence forecasts Tx1 and Tx2 and bias 
corrected forecasts MSEc and MCCc, right: raw forecast data MSE and MCC. 
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A. Sizing of ESS power 

The rated power PESS of an ESS defines its capacity to 
react quickly on events with very short time constants 
and is often decisive for the determination of the most 
appropriate ESS technology. In the following the 
normalised ESS power pESS = PESS/Pinst will be used. 
The first guess for PESS is the installed wind power Pinst. 
Thus, pESS = 1 can serve as a reference because it 
guarantees any power demand to be served.  
As shown in [13], the unserved energy eup, due to 
reduced ESS power rating, can be obtained directly from 
the forecast error distribution. If f(ε) is the probability 
density function (pdf) of the forecast error ε and pESS the 
normalised rated power of the ESS, eup can be calculated 
as 

 ( ) ( )
11

ESS

up ESS
p

e f p d
p

ε ε ε= ⋅ −∫  (2) 

Modern probabilistic forecast tools provide these 
distributions, but as shown in [13], the pdf can be 
estimated from relatively small datasets (one year for 
example) using the beta distribution. This method is 
referred as ‘Betafit’. In this paper, estimated pdf are used 
and results are compared with time step simulations. 
 
B. Sizing of ESS energy capacity 

The definition of energy capacity requirements is more 
complex. Here a two-step method is proposed. The first 
step consists in the estimation of the energy throughput 
of the ESS. In a second step, saturation times of the ESS 
are estimated for the case that ESS energy capacity EESS 
is reduced below the limit needed for 100% 
compensation of the forecast errors.  
It will be shown that unserved energy eue may be 
estimated in a first approach by 
 ue sate t NMAE≈ ⋅  (3) 

where tsat [%] is the saturation time and NMAE [p.u.] the 
normalised mean absolute error. 

In the next paragraphs, saturation time tsat and energy 
throughput ratio ETR will be explained. While ETR in 
this case only depends on the forecast error, tsat is 
obtained as a function of ESS energy capacity EESS. 
In (3) NMAE represents the energy throughput ratio of 
the ESS. Only in this special case of forecast error 
compensation the throughput is equal to the mean 
absolute error (MAE).  
Thus, in a more general formulation the energy 
throughput ratio ETR would be used instead of NMAE, 
which can be defined as 

 ( )
( )

 

 
stp

total w

p t dtE
ETR

E p t dt
= = ∫

∫
 (4) 

where Etp is the annual ESS energy throughput, Etotal the 
total generated wind energy and ps the normalised storage 
power, pw the normalised measured wind power. 

In this case Etotal is the wind energy generation but it 
could represent any reference such as the difference 
between generation and consumption in case of demand 
forecast, for example. 

Note that ETR is related to the number of equivalent full 
cycles of the ESS, if ESS energy capacity EESS is known. 
Here ETR is preferred, since it describes a property of the 
energy input variable (in this case forecast error ε) and is 
independent of the ESS size or technology. 
The value of Etp is the integral of absolute energy input 
and output of the ESS, which means that charged and 
discharged energy is summed. For an ideal ESS with 
100% storage efficiency the input and output energy is 
equal, as the energy balance has to be maintained always. 
Because this idealised case is of special interest here, the 
ideal throughput ratio ETR0 is introduced here. In this 
section, only ETR0 is considered for sizing.  
To obtain the throughput ratio, assuming an ESS 
efficiency η, it can be shown that the following equation 
describes the relationship between ideal and real 
throughput ratios [15]. 

 
0

1
2

ETR ETR η
η
+

=  (5) 

The saturation time tsat can be estimated from the cdf of 
SOC, because the cumulative frequency Fsoc of any value 
of SOC represents the percentage of time, the state of 
charge will be below this value. If ESS size is reduced to 
a value ex, 100 − Fsoc (ex) is the time, SOC will be greater 
than ex which is nothing else than tsat. As a first 
approximation, equation (10) can be formulated to 
estimate tsat. 
 ( )100sat SOC xt F e= −  (6) 

where Fsoc is the cumulative distribution (or histogram) 
of SOC and ex the reduced ESS size. 

An example how to obtain tsat is shown in Fig. 2 for the 
case of a Tx1 forecast of 12 h. When the ESS size is 
reduced to 54% (ex = 0.54), a frequency value of 80% is 
obtained. This means that during 20% of all the operating 
time, SOC is above ex and the ESS will probably not 
serve the demand. 
 
 

 
Fig. 2.  Cumulative distribution (cdf) of SOC (Tx1, T = 12 h) 
with representation of saturation time tsat for a reduced ESS 
size. 
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C. Simultaneous reduction of ESS power and energy 

In the preceding sections, unserved energy has been 
estimated separately for reduced ESS power and energy 
capacity. The estimation procedures were developed 
maintaining the rated power PESS at 1 p.u. while EESS was 
reduced or EESS was maintained at the maximum value, 
while PESS was reduced. 
In order to estimate the effect of a simultaneous reduction 
of rated power and energy values, a discrete two-
dimensional interpolation algorithm is applied here. As a 
result, eu can be estimated for any combination of 
reduced power and energy capacity of the ESS. 
Let ETR0 be the throughput ratio of the ESS without any 
energy or power restrictions, i.e. all energy demand is 
covered by the ESS. Let further be eu the unserved 
energy due to any restrictions, then the reduced 
throughput ratio  may be written as 
 '

0 0 uETR ETR e= −  (7) 

where ETR0 is the ideal throughput ratio if all errors are 
compensated and eu is the unserved energy. 

Equation (7) is a general formulation without considering 
the contribution of ESS power and energy reduction to 
the global value of eu. In order to split eu into its 
components eup and eue it is convenient to normalise eu by 
ETR0. In (8) a 2D-interpolation algorithm is formulated 
for the case that relationships of eup(PESS) and eue(EESS) 
are given in discrete form. 

 , ,'
0, 0

0 0

1 1up j ue k
jk

e e
ETR ETR

ETR ETR
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (8) 

where j is the index of the unserved energy vector 
eup(PESS) and k is the index of vector eue(EESS). 

If now       is normalised with ETR0, a general 
formulation for the calculation of eu may be 
 ( ) '

0 0, (1 )u ESS ESSe P E ETR etr= −  (9) 

where eu is the interpolated unserved energy [%], ETR0 
the ideal energy throughput ratio and the normalised 
reduced energy throughput ratio. 
 
4. Results 
 
The methodology presented above has been applied in a 
case study with real world forecast data. This study 
pursues two aims. First it validates the thesis that forecast 
errors can be modelled with a simple persistence 
approach. Secondly the sizing method is demonstrated 
and results are compared for different input data. 
 
A. Results for ESS power 

In Fig. 3 it can be seen at a glance that the Tx1 scenario 
produces very similar results compared to real forecasts 
(MCC and MCCc). If ESS power is calculated with 
Betafit pdf estimation from Tx1 (bold black line), very 
good results are obtained. The situation is similar for the 
MSE forecast. Best results are obtained with bias 
corrected data MSEc and MCCc.  
In Fig. 3 it can also be seen that estimations using Betafit 
with corrected data (‘betafit MCCc’) are closer to the 
results obtained from the histogram of the data (‘hist 

MCCc’). This shows the importance of bias-correction 
for the approximation of the forecast error pdf with 
Betafit. MCC forecast data showed a quite strong bias. 
Hence bias-correction had a strong impact on the results. 
Again it should be mentioned that wind power forecast 
data in general should not be biased. Thus, the weakness 
of the Betafit method in this point is not that relevant. 
In case of MCC, bias correction reduces the estimated 
ESS power by approximately 10%. 
 

 
Fig. 3.  Minimum ESS power as a function of unserved energy 
from real world 24-h forecast MCC compared with persistence 
scenario Tx1, calculated with observed histograms (‘hist’) and 
Betafit approximation (‘betafit’). 
 
B. Results for ESS energy capacity 

In Fig. 4 results are shown for sizing of ESS energy 
capacity. It shows bias corrected scenarios together with 
Tx1 and Tx2. Solid curves show estimations according to 
equation (3), dashed curves show results from time step 
simulations. 
It is seen that the Tx2 scenario can be used for ESS 
energy sizing only for values of unserved energy 
eue > 10%. If lower values are desired, real world 
forecasts may demand significantly larger storage 
capacities. Scenario Tx1 is inadequate in this case.  
 

 
Fig. 4.  Minimum ESS energy capacity as a function of 
unserved energy from dataset C for real world 24-h forecasts 
MSE and MCC compared with persistence scenarios Tx1 and 
Tx2, estimated from cdf of SOC (“estim.”) and time step 
simulation (“step”). 

'
0etr
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C. Results for interpolation of ESS power and energy 

Interpolating the results, sizing surfaces can be obtained, 
giving an estimation of the unserved energy for every 
combination of reduced energy and power ratings. One 
example is given in Fig. 5. Here a reference system of 
1 MW and 24-h forecast is assumed, which represents 
100% forecast error compensation in case of forecast 
scenario Tx1. Values of unserved energy are normalised 
by the maximum, which is equal to ETR0 in this case. 

 

 
Fig. 5.  2D-interpolation of unserved energy, normalised with 
ETR0 as a function of ESS size, reference case of 1 MW 
installed power and 24-h Tx1 forecast. 
 
5. Conclusions 
 
Five main conclusions can be derived from this study: 
 
• Large ESS capacities are needed to reduce wind 

power forecast errors 

• Permitting only small quantities of unserved energy, 
requirements for ESS are reduced drastically 

• Persistence scenarios Tx1 (for power) and Tx2 (for 
energy) are valid for ESS sizing as they represent to a 
large extent statistics of real world forecasts 

• The proposed sizing method performs well for 24-h 
forecasts with both, persistence and real world data 

• Bias correction (MOS) improves model precision and 
reduces ESS capacity requirements 

 
It could be demonstrated that forecast errors from the 
persistence scenarios can be used for ESS sizing. The 
sizing method is verified with real world forecast data. 
Especially for 24-h forecasts, the method presents 
relatively low errors which is interesting for day-ahead 
forecasts in electricity markets. Finally, model output 
statistics (MOS) such as the proposed online bias-
correction revealed a great value for ESS sizing. 
Estimations are more precise and statistic parameters 
resemble more those from persistence scenarios. 
From the case study it can be seen, that large capacities 
of energy storage are needed to compensate wind power 
forecast errors. On the other hand, only permitting 
amounts of unserved energy in the range of 5% may 
reduce the required ESS size by up to 50%. 
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