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Abstract. New demand-side management models have 

emerged as a result of rising energy prices, the development of 

artificial intelligence, and the rise of prosumers. The purpose of 

this research is to use deep learning techniques to predict the 

energy production and demand of a prosumer network to 

determine dynamic prices for the local market. Gated Recurrent 

Units (GRU) and Long Short-Term Memory (LSTM) were two 

methods that were taken into consideration for forecasting 

consumer demand and wind and solar energy generation. Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE) were used to compare 

the various approaches. The results demonstrated that GRU, with 

0.0273, 0.0158, and 49.8 in RMSE, MAE, and MAPE 

respectively, is the best method for predicting energy generation 

and consumption in our datasets. Demand management system 

dynamic prices were calculated on an hourly basis using input 

from energy generation and demand forecasts. Finally, an 

optimization method was developed for establishing the energy 

planning. 
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1. Introduction 
 

Energy demand growth is slowing due to high energy 

prices, heightened energy security concerns, and 

strengthened climate policies. Advanced economies still 

see declining demand for fossil fuels by 2030, but short-

term actions are needed to reduce dependency [1]. Russia's 

invasion of Ukraine in 2022 has caused volatility and 

spikes in energy prices, leading to a recasting of the energy 

trade and investment landscape [2]. Renewables have held 

up well, but the crisis has shattered energy relationships 

and led to measures to strengthen energy security [3]. 

This war has not only exposed the EU's energy security, 

but has also shown the situation of energy poverty suffered 

by many of the EU's inhabitants as a result of soaring 

prices [4]. According to Eurostat, during the first quarter 

of 2022, household electricity prices in the European 

Union rose by 84% compared to the previous year [5]. In 

the meantime, the prices set for purchasing energy from 

prosumers have remained constant. 

The emergence of collective self-consumption has enabled 

new energy solutions to emerge [6], such as the purchase 

and sale of energy in local markets that reduce the load on 

the grid itself and give the customer the possibility to 

valorize their energy [7]. Nowadays, marketers are the 

only agents responsible for buying and selling energy from 

prosumers at a set price, but what would it be like if the 

customers set their price? What would happen if these 

prices were dynamic depending on the availability of 

energy from the grid and the local network? This is what 

a local market for distributed energy resources refers to. 

In this context, a policy of self-supply models and energy 

empowerment of users is being implemented in Europe 

by developing energy local management models [8]. Data 

analysis techniques can be used to predict energy 

consumption and the generation of the prosumers of a 

local market [9]. The implementation of Machine 

Learning and Deep Learning allows real-time predictions 

with low precision errors of variables that were 

unthinkable until now, such as energy consumption and 

renewable energy generation.  

The aim of this work is to present a methodology to 

estimate prices on an hourly basis according to the 

energy behavior of users. In this research, a network of 

five residential prosumers, average installed power 5.5 

kW, with renewable generation based on photovoltaic 

and wind, without storage, with a data history of the last 

3 years, has been considered. For the prediction, one 

Machine Learning model based on artificial neural 

networks (ANN) is used to estimate the next day's 

consumption of the five profiles, while the prediction of 

solar PV generation and wind generation uses two 

methods based on Deep Learning. In addition, an hourly 

optimisation model is used to present the dynamic prices 

offered in the local market, taking into account the 

availability of energy in the system.  

This paper consists of five sections. Section 1 describes 

the current situation and introduces the gap this research 

aims to fill. Section 2 presents the methodology of the 

work and a description of the datasets used. Section 3 

presents the results obtained in the work, from the 

comparison between the different Deep Learning 

methods such as dynamic power purchase and sale 

prices. Section 4 discusses the results obtained and 

compares them with those obtained in the literature. 

Finally, section 5 presents the conclusions and future 

scope of the research. 

 

2. Methods 
 

For this work, two different datasets were used for 

prediction and one dataset was used for energy planning 

that can be found in [10]: 
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A. Wind and solar generation data 

A dataset from the Spanish System Operator was used to 

perform the solar and wind prediction. This dataset 

consists of hourly generation data from 01-01-2017 to 31-

12-2021, approximately 4 years of data with 35146 non-

zero values. It also contained climatological variables such 

as temperature, humidity, precipitations, irradiance, wind 

speed and wind direction. 
 

B. Energy consumption data 

A dataset of five residential customers obtained from the 

power company, Iberdrola Distribuidora i-DE website for 

the last four years, from 01-01-2017 to 31-12-2021, 

approximately 4 years of data with 35146 values was used 

for each residential profile. 
 

C. Market price data 

Data was obtained from the OMIE, the nominated 

electricity market operator in the Iberian Peninsula. An 

OMIE dataset with market prices of 2021 with 8760 values 

was used to establish the local market energy planning. 
 

Two techniques were used to predict energy consumption 

and generation: Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRU). The Rectified Linear Unit 

(ReLU) was the neuron activation function. The error 

reduction method used is the Adaptive Moment estimation 

(Adam) and the mean square error (RMSE) is the loss 

function to be optimized. The best prediction method is the 

one that obtains the best score in the three error metrics: 

the root mean square error (RMSE), the mean absolute 

error (MAE) and the mean absolute percentage error 

(MAPE). 

 
 

 

 
 

Fig. 1. Methodology of the work 

 
 

 

The methodology (Fig. 1) carried out is presented below: 
 

I. Preprocessing and data treatment. 

First, the data processing was performed, since there were 

null or empty values in the data set. These values were 

replaced using the "ffill" method, which fills the empty 

values with the previous element. A descriptive analysis of 

the different sets of values was performed to find out their 

mean, standard deviation, quartiles Q1, Q2, Q3 and Q4, 

maximum and minimum. These values were then used to 

scale the variables between 0 and 1 using eq. (1). 

 
 (1) 

 

II. Training the models. 

Subsequently, the dataset is divided into two different 

training and test sets, composed of 80% of the values 

from the initial dataset to generate and train the model 

and the remaining 20% to test it. For this purpose, 

sequences of 24 values, one per day, were created for the 

training and test subsets. 

 

Among the different models to be used, two were 

considered: 

1. Long Short-Time Memory (LSTM) 

2. Gated Recurrent Units (GRU) 

 

Each of the LSTM-based models was composed of a 

perceptron consisting of three hidden layers with 50 units 

per layer over the output dense layer, while the GRU 

model was composed of two hidden layers of 50 units 

over the output dense layer. The output dense layer gives 

a single predictor variable, so the result vector has an 

output of type (none, 50). The details of the architecture 

of the different models are presented in Table I. 

 
Table I. Architecture of the neural networks 

Method Recurrent layer 
Output shape from 

input layer 

Stacker LSTM LSTM (None, 50) 

GRU GRU (None, 50) 

 

III. Power demand and generation forecasting 

Once the neural network model has been made, it is 

compiled using the mean absolute error as the loss 

function and Adam as the optimizer. Then, the model 

must be trained using the training data set. Therefore, the 

number of epochs and the sample size must be chosen 

correctly. In this work, one hundred epochs were used for 

the computation of each model with a batch size of 24. It 

was found that a larger number of epochs produced an 

overfitting of the system and it was necessary to 

introduce outliers to ensure that it generalized the model. 

The batch size was set to match that of the sequence size. 

Next, the model generates a sequence of values that 

serves as predictions for the next iteration, leading to the 

results of energy demand, solar and wind power 

generation. Finally, the error of the predicted values with 

respect to the true value is performed using the RMSE, 

MAE and MAPE metrics. (eq. (2), (3) and (4)) 

 

 

 (2) 

   

 
 (3) 

   

 

 (4) 
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IV. Demand Management 

 

Once the models are trained, they generate 5 different 

profiles of solar, wind and power demand generation to 

simulate the behavior of a local grid (Fig. 2). The profiles 

do not have storage, but the local grid does, allowing for 

greater combinations of trade-offs. As an application case, 

a storage of 12% of the maximum power, i.e., 3kW, was 

considered. 

 

 
Fig. 2. Local market Management 

 

The local market (Fig. 2) is composed of five residential 

customers that exchange energy within the local market. 

Three variables are involved in the model: storage, energy 

surplus and energy deficit. When there is not enough 

energy in the local market to supply the demand or when 

there is surplus energy, the grid is called upon. To manage 

the network, an energy balance is performed through eq. 

(5), where the sum of all energies entering the system is 

equal to the sum of all energies leaving the system. 

 

 
 (5) 

 

Eq. (6) is used to calculate the local market profit. 

  

 (6) 

 

Where:  

B Benefit of the local market 

 Energy surplus of the local market 

 Selling price from the local market to the grid 

 Energy purchased from the grid 

 Purchase price from the grid 

 Energy from the available storage 

 Price of extracting energy from storage 

 Energy surplus of the local market 

 Selling price from the local market to the grid 

 Deficit energy of the local market 

 Purchase price from the grid 

 Energy that is stored 

 Price of extracting energy from storage 

The mere exchange of energy does not maximize the 

energy management of the market. To this end, energy 

planning is then carried out. It has been considered that 

the price of extracting ( ) or introducing ( ) energy to 

storage is composed of a depreciation price of the 

equipment and the average price of the energy stored at 

that moment. However, in this study, no specific storage 

battery model was defined, so this depreciation term was 

dropped. 

 

 

 
(7) 

 

The conditions for using storage are presented: 

Condition 1. To extract energy from storage, the storage 

price must be lower than the price at which the energy is 

purchased from the local market and the price at which it 

is sold to the grid. 

 

  (8) 

 

Condition 2. To introduce energy from storage, the 

storage price must be higher than the price at which the 

energy is sold to the local market and the purchase price 

from the grid. 

 

  (9) 

 

The following restrictions are also considered: 

Restriction 1. The local market cannot buy and sell from 

the network at the same time. 

 

  (10) 

 

Restriction 2. Energy cannot be output and input from 

storage at the same time. 

 

  (11) 

 

V. Optimization for energy planning 

Finally, an economic optimization of the network 

exchanges is performed based on IBM's CPLEX 

optimizer library, which is also in Python. An 

evolutionary optimization method with calculation 

processing parameter 30 minutes and objective variable B 

was used. Prices are intended to be obtained hourly, so 

this feature was crucial for the prediction. 

 

3. Results 
 

The results obtained for solar and wind power generation 

prediction (Fig. 3) with LSTM and GRU are presented in 

Table II. The LSTM model had a low root mean square 

error (RMSE) and mean absolute error (MAE) and high 

MAPE. The GRU model had RMSE, MAE and MAPE 

values of 2.73E-02, 1.58E-02 and 4.98E+01,respectively, 

suggesting that the GRU model is also capable of 

accurately predicting solar and wind energy. The local 

market was composed of 5 residential profiles with 

different profiles of wind and/or solar generation (Fig. 4).  
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Fig. 3. Solar and wind power generation forecast 

 

 
Fig. 4. Five residential profiles forecast 

 

 
Fig. 5. Demand management 

Table II. RMSE, MAE and MAPE results 

Method RMSE MAE MAPE 

LSTM-1 2.84E-02 1.87E-02 3.01E+03 

LSTM-2 3.47E-02 1.90E-02 1.07E+02 

GRU-1 2.73E-02 1.58E-02 4.98E+01 

GRU-2 3.29E-02 1.67E-02 8.96E+00 

 

In implementing energy optimization, the energy 

purchase and sale strategy was defined (Fig. 5). The 

demand management is closely related to the storage 

capacity of the system because the depreciation term 

considered was zero. Finally, the following hour, the 

prediction is made again by entering the value of the 

previous hour and the optimization of the energy 

planning is repeated. 

 

4. Discussion 
 

The Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) forecasting methods are two deep 

learning techniques widely used in energy forecasting. 

LSTM is particularly useful for forecasting time series 

with complex and long-running patterns, while GRU is a 

simpler and more efficient technique. Both methods have 

advantages and disadvantages, and the choice between 

them will depend on the specific needs of each 

forecasting task and the dataset in question. In general, it 

has been observed that LSTM models tend to perform 

better when it comes to predicting extreme values or 

outliers in the time series. This is due to the ability of 

LSTMs to remember long-term information and handle 

complex data sequences. However, in terms of the best 

overall approximation of the time series, it has been 

found that GRU models tend to be more effective. This is 

due to the simplicity of the GRU design, which allows 

them to learn and generalize patterns in the data more 

efficiently than LSTM models. In [11], the author points 

out that based on accuracy metrics such as Mean 

Absolute Error (MAE) and Mean Squared Errors (MSE 

and RMSE), the best method for predicting demand and 

solar generation was the Stacked LSTM method, while 

for predicting wind generation the RNN method obtained 

the best results. However, in [12], the author points out 

that it is better to use different methods for each of the 

variables and makes a bibliographic review of the best 

methods. In summary, if good prediction of extreme 

values is sought, the LSTM model may be more suitable, 

while if the best overall approximation of the time series 

is sought, the GRU model may be more effective, which 

is consistent with our case. As for the activation function 

of the neural network, both the authors in the literature 

and I have used the rectified linear activation function 

(ReLU). Since we are dealing with non-negative 

variables (energy storage, surplus and deficit ϵ [0, ∞]), it 
is best to use this algorithm, which also speeds up the 

computation. It should be noted that these papers did not 

use the Adam optimiser to compile the model, but instead 

used Gradient Descent. Both methods are very similar. 

However, my methodology proposes an hourly 

prediction, which requires an efficient computation, but 

at the same time fast to process all the information. In 

that sense, the Adam optimiser is more efficient, since 
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the learning rate of the neural network is variable for each 

of the features. 

 

As for the CPLEX method used to optimize energy 

planning and obtain hourly prices, it is an optimization tool 

widely used in economic and energy planning problems 

due to its ability to solve optimization problems efficiently 

and accurately. In economic optimization, the CPLEX 

method is used to maximize a company's profits, minimize 

production costs, determine the optimal production 

quantity and set optimal prices. In the case of energy 

planning, CPLEX is used to maximize energy efficiency, 

minimize energy production costs and reduce greenhouse 

gas emissions. In addition, the CPLEX method can handle 

complex problems with constraints and multiple 

objectives, making it a tool for decision making in 

economic and energy environments. It is for this reason 

that its use has been chosen. In [5], the author carries out a 

literature review of the most widely used methods to 

establish a dynamic optimization of energy prices and 

proposes a non-linear exponential optimization method. 

However, in [6], the author presents an optimization based 

on Machine Learning with reinforcement learning that 

achieves better results. In our research, the CPLEX 

optimization was considered due the less computational 

expense, since the prediction of hourly consumption and 

generation has a high computational demand. Previous 

authors did not include the generation and consumption 

variables as proposed in this paper. 

 

5. Conclusions 
 

In conclusion, in this work neural network models, LSTM 

and GRU, and an economic optimization model with 

hourly prices have been implemented. They can be an 

effective tool for predicting solar PV and wind power and 

energy demand. Neural network models allow capturing 

complex and nonlinear patterns in the data, while the 

economic optimization model takes into account the cost 

of energy generation and distribution. 

 

The accuracy of the predictions obtained with the proposed 

models was significantly higher than the predictions made 

with benchmark models, indicating that these models can 

be a useful tool for improving the management and 

planning of renewable energy generation and distribution. 

In addition, the accuracy of the predictions can be further 

improved by adding more data, such as weather and 

temperature. 

 

In summary, this study highlights the importance of using 

deep learning and economic optimization models to 

predict renewable energy generation and energy demand. 

The ability to accurately predict renewable energy 

generation is critical to improving grid planning and 

management, which in turn can help reduce dependence on 

fossil fuels and mitigate the impacts of climate change. 

Ultimately, the models proposed in this study have the 

potential to improve the efficiency and sustainability of the 

global energy system and giving a new tool to fight the 

energy poverty empowering citizens. 
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