Superconductivity and their Applications


A. Roque, D. M. Sousa, V. Fernão Pires, E. Margato




The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can benefit from them. Some examples of industrial applications incorporating superconducting materials stand out in this paper. Among other possibilities, the nuclear magnetic resonance, the magnetic levitation train, the transport processing of electrical energy (motors, generators, transformers and power lines) and superconducting magnetic energy storage (SMES) systems are already solutions contributing to the nowadays daily life, but more than that, are solutions that will contribute to improve the quality of life of many human beings in the near future. In addition to these solutions, in this paper are presented and discussed the pros and cons of a solution designed for the fast field cycling nuclear magnetic resonance technique that benefits of the usage of superconducting blocks.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 15)
Pages: 322-327 Date of Publication: 2017/04/25
ISSN: 2172-038X Date of Current Version:
REF: 308-17 Issue Date: April 2017
DOI:10.24084/repqj15.308 Publisher: EA4EPQ

Authors and affiliations

A. Roque(1,2), D. M. Sousa(2,3), V. Fernão Pires(1,2), E. Margato(4)
1. Department of Electrical Engineering. ESTSetúbal/Instituto Politécnico de Setúbal. Setúbal, Portugal
2. INESC-ID. Lisboa, Portugal
3. DEEC AC-Energia, Instituto Superior Técnico, Universidade de Lisboa. Lisboa, Portugal
4. CEEI, ISEL-Instituo Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, and INESC-ID, Lisboa. Portugal

Key word

Superconductivity; Energy storage; Superconducting applications; Nuclear magnetic resonance (NMR).


[1] W. Meissner; R. Oschsenfeld: “Ein neuer Effect bei Eintritt der Supraleitfahigkeit”, Die Naturwissenschaften, vol. 21 (44), pp. 787-788, 1933.
[2] P. Branício: “Introdução à supercondutividade, Suas Aplicações e Mini-Revolução Provocada Pela Redescoberta do MgB2: Uma abordagem Didática”, Revista Brasileira de Ensino de Física, vol. 23, nº 4, 2001.
[3] A. Abricosov: “On the Magnetic Proprieties of Superconductors of the Second Group”, Sov. Physics JETP, Vol. 5 N. 6, 1957.
[4] S. Nishijima and al.: “Superconductivity and the environment: a Roadmap”, Supercond. Sci. Technol. 26, 113001 (35pp), 2013.
[5] H. Jones: “Superconductors in the transmission of electricity and networks”, Elsevier, Energy Policy 36 4342–4345, 2008.
[6] H. Thomas and al.: “Superconducting transmission lines - Sustainable electric energy transfer with higher public acceptance?” Elsevier, 2016.
[7] T. Bohno and al.: “Development of 66kV/6.9kV 2MVA prototype HTS power transformer”, Physica C: Superconductivity, 426-431, Part 2, pp. 1402-1407, 2005.
[8] H. Zeguer: “630kVA high temperature superconducting transformer”, Elsevier, Vol. 38, Issue 11, Pages 1169-1172, 1998.
[9] A. Narlikar: “Higth Temperature Superconductivity 2- Engineering Applications”, Springer, ISBN 978-3-642-07369-4, 2004.
[10] M. Tinkham and C. J. Lobb: “Physical Properties of the New Superconductors”, Solid State Phys. 42, p. 91, 1988.
[11] American Superconductor Corporation, Annual Report, Form 10-k, Securities and Exchange Commission Washington, D.C. 20549, 2005.
[12] [Online]. Available: superconductor-motor-for-navy-passes-full-power-test/.
[13] [Online]. Available:
[14] M. Ali and al: “An Overview of SMES Applications in Power and Energy Systems”, IEEE Trans. on Sustainable Energy, Vol. 1, No. 1, 2010.
[15] M. Strasik and al.: “Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing”, IEEE Transactions on Applied Superconductivity, vol. 17. No. 2, 2007.
[16] H. Ibrahim; A. Ilinca; J. Perron: “Energy storage systems-Characteristics and comparisons”, Elsevier, Renewable and Sustainable Energy Reviews 12 1221-1250, 2008.
[17] X. Xue; K. Cheng; D, Sutanto: “Power System Applications of Superconducting Magnetic Energy Storage Systems”, Fourtieth IAS Annual Meeting, 2005.
[18] P. Tixador and al.: “Design and First Tests of a 800kJ HTS SMES, IEEE Trans. on Applied Superconductivity, vol. 17. No. 2, 2007.
[19] [Online]. Available: view/id/42/video-como-um-equipamento-de-ressonancia-magnetica.html#.
[20] F. Noack: “NMR Field-Cycling Spectroscopy: Principles and Aplications”, Progress in NMR Spectroscopy, Vol. 18, pp. 171-276, 1986.
[21] D. M. Sousa; G. Marques: “Study of the Air Gap Magnetic Field Distribution of a Nuclear Magnetic Resonance Iron-Core Magnet”, 1st IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, Novosibirsk - Russia, pp. 242-247, 2008.
[22] A. Roque; D. M. Sousa; E. Margato; V. Machado; P. Sebastião and G. Marques: “Magnetic Flux Density Distribution 3D Analysis in the Air Gap of a Ferromagnetic Core with Superconducting Blocks”, IEEE Trans. on Applied Superconductivity, Vol. 25, nº 6, 2015.