Electrocatalytic performance comparison of Pt/V and Pd/V electrocatalysts for ethanol oxidation reaction

E. L. da Silva, A. Cuña, S. Khan, M. Cadorin, S. Pianaro, R. B. Otto and C. F. Malfatti




Direct ethanol fuel cells (DEFCs) operate at low temperature, which makes the oxidation and reduction reactions slower, requiring electrocatalysts able to accelerate these reactions. In the present work, commercial Vulcan carbon (V) supported Pt and Pd catalysts were compared as electrocatalysts for ethanol oxidation reaction (EOR) in acidic and alkaline medium, respectively. Cyclic voltammetries obtained in presence of ethanol showing a better catalytic performance for the Pd/V electroctalyst compared to the Pt/V electrocatalyst. The maximum current density related with the EOR in a 1.0 mol L-1 ethanol + 1.0 mol L-1 NaOH solution was 236.9 A g Pd-1 for Pd/V. The better performance of the Pd/V electrocatalyst can be associated with a lower Pd nanoparticles sizes and higher particles dispersion onto the Vulcan carbon surface in the Pd/V electrocatalyst. The onset potential for the EOR was 0.2 V vs. SCE for the Pt/V sample and -0.6 V vs. Hg/HgO for the Pd/V sample.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 15)
Pages: 449-452 Date of Publication: 2017/04/25
ISSN: 2172-038X Date of Current Version:
REF: 350-17 Issue Date: April 2017
DOI:10.24084/repqj15.350 Publisher: EA4EPQ

Authors and affiliations

E. L. da Silva(1), A. Cuña(2,1), S. Khan(1), M. Cadorin(1), S. Pianaro(3), R. B. Otto(4) and C. F. Malfatti(1)
1. LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS (Brazil)
2. Cátedra de Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República, Montevideo (Uruguay)
3. Departamento de Engenharia de Materiais, Universidade Estadual de Ponta Grossa, Ponta Grossa/PR (Brazil)
4. Automation and Simulation of Electrical Systems Laboratory (Lasse)- Itaipu. Foz do Iguaçu - Paraná (Brazil)

Key word

Energy conversion, Direct Ethanol Fuel Cells, Pt catalyst, Pd catalyst, Ethanol oxidation reaction.


[1] ER. Gonzalez, “Eletrocatalise e poluição ambiental”. Quím Nova 2000, Vol. 23, pp. 262-266.
[2] E. Antolini, “Catalysts for direct ethanol fuel cells”. J Power
Sources 2007, Vol. 170, pp. 1-12.
[3] YS. Li, TS. Zhao and Z.X. Liang, “Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells”. J. Power Sources 2009, Vol. 187, pp. 387–392.
[4] E. Antolini, E.R. Gonzalez, J. Power Sources 195 (2010) 3431–3450.
[5] AN. Geraldes, DF. da Silva, E. Segura Pino, JC. Martins da Silva, RF. Brambilla de Souza, P. Hammer, EV. Spinacé, A. Oliveira Neto, M. Linardib, M. Coelho dos Santos, Electrochim. Acta 111 (2013) 455-465.
[6]RM. Modibedi, T. Mehlo, KI. Ozoemena, MK. Mathe, “Preparation, characterisation and application of Pd/C nanocatalyst in passive alkaline direct ethanol fuel cells (ADEFC)”. Int. J. Hydrog. Energy 2015, Vol. 40, pp. 15605-15612.
[7] PS. Correa, EL. Silva, RF. Da Silva, C. Radtke, B. Moreno, E. Chinarro, CF. Malfatti, “Effect of decreasing platinum amount in Pt–Sn–Ni alloys supported on carbon aselectrocatalysts for ethanol electrooxidation”. Int. J. Hydrog. Energy 2012, Vol. 37, pp. 9314–9323.
[8] P. Kim, JB. Joo, W. Kim, J. Kim, IK. Song, J. Yi, “NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation”.
J. Power Sources 2006, Vol. 160, pp. 987-990. [9] E. Leal da Silva, A. Cuña, MR. Ortega Vega, C. Radtkec, G. Machado, N. Tancredi, CF. Malfatti, “Influence of the support on PtSn electrocatalysts behavior: Ethanol electro-oxidation performance and in-situ ATR-FTIRS studies”. Appl. Catal. B 2016, Vol. 193, pp. 170-179.
[10]L. Jiang, G. Sun, Z. Zhou, W. Zhou, Q. Xin, “Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell”. Catal. Today 2004, Vol. 93-95, pp. 665-670.
[11] J. C. Chaston, Platinum Metals Rev., 99 (1965) 126.
[12] S. Jones, A. Kolpin, SCE. Tsang, Catalysis, Structure & Reactivity 1 (2015) 19.
[13] M. Carmo, AR. dos Santos, JGR. Poco, M. Linardi, “Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications”. J Power Sources 2007, Vol. 173, pp. 860–866.
[14] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, et al. “Pt based anode catalysts for direct ethanol fuel cells”. Appl Catal B Environ 2003, Vol. 46, pp. 273–285.
[15] M. Chatterjee, A. Chatterjee, S. Ghosh, I. Basumallick, “Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution”. Electrochimica Acta 2009, Vol. 54, pp. 7299–7304.
[16] N. Su, X. Chen, Y. Ren, B. Yue, H. Wang, W. Cai, H. He, “The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation”. Chem. Commun. 2015, Vol. 51, pp. 7195-7198.
[17] BD. Cullity and SR. Stock, Elements of x-ray diffraction. Upper Saddle River, NJ: Prentice Hall, 2001.
[18]JH. Kim, SM. Choi, SH. Nam, MH. Seo, SH. Choi, WB. Kim, “Influence of Sn content on PtSn/C catalysts for electrooxidation of C1-C3 alcohols: synthesis, characterization, and electrocatalytic activity”. Appl. Catal. B 2008, Vol. 82, pp. 89-102.
[19] T. Maiyalagan and K. Scott, “Performance of carbon nanofiber supported Pd–Ni catalysts for electro-0xidation of ethanol in alkaline medium,” J. Power Sources 2010, Vol. 195, pp. 5246–5251.
[20] S. Carrión-Satorre, M. Montiel, R. Escudero-Cid, J.L.G. Fierro, E. Fatás, P. Ocón, Int. J. Hydrog. Energy 41 (2016) 8954.