ICREPQ |   AEDIE |   Sponsors |   Links | RE&PQJ-main |  RE&PQJ-papers
 

An Open-phase Fault Detection Method for Six-phase Induction Motor Drives

 

N. Rios-Garcia, M.J. Duran, I. Gonzalez-Prieto, C. Martin and F. Barrero

2017/04/25

Abstrac

Induction machines (IM) with multiple sets of three-phase windings are a real alternative in safety-critical applications due to their inherent redundancy and extra number of freedom degrees. These properties can be used to develop a fault-tolerant system without extra hardware. The fault detection is mandatory in the creation of a fault tolerant system. Since, the fault localization allows to adapt the control scheme of this anomalous mode of operation. Nowadays, open-phase faults (OPFs) and six-phase IMs are hot topics in the literature of fault-tolerant drives. Thus, this paper presents an open-phase fault detection method for a six-phase IM drive. The detection method is based on the vector space decomposition (VSD), taking the components of the secondary orthogonal subspace to localize the open-phase fault. The goodness of the proposed method is validated with simulation results.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 15)
Pages: 473-478 Date of Publication: 2017/04/25
ISSN: 2172-038X Date of Current Version:
REF: 358-17 Issue Date: April 2017
DOI:10.24084/repqj15.358 Publisher: EA4EPQ

Authors and affiliations

N. Rios-Garcia(1), M.J. Duran(1), I. Gonzalez-Prieto(1), C. Martin(2) and F. Barrero(2)
1. Department of Electrical Engineering. E.T.S.I.I., Malaga University 29071 Malaga (Spain)
2. Department of Electronic Engineering. E.T.S.I, Sevilla University 41092 Seville (Spain)

Key word

Multiphase motor drives, open-phase fault, fault detection, fault localization.

References

[1] E. Levi, “Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines,” IEEE Trans. on Ind. Electron., vol 63, no. 1, pp. 433-448, 2016.
[2] F. Barrero and M.J. Duran, “Recent advances in the design, modeling and control of multiphase machines – Part 1,” IEEE Trans. on Ind. Electron., vol 63, no. 1, pp. 449-458, 2016.
[3] M.J. Duran and F. Barrero, “Recent advances in the design, modeling and control of multiphase machines – Part 2,” IEEE Trans. on Ind. Electron., vol 63, no. 1, pp. 459-468, 2016.
[4] T. McCoy and M. Bentamane, “The all-electric warship: An overview of the U.S. Navy’s integrated power system development programme,” in Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 1998, pp. 1–4.
[5] M. Benatmane and T. McCoy, “Development of a 19 MW PWM converter for U.S. Navy surface ships,” in Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 1998, pp. 109–113.
[6] C. Hodge, S. Williamson, and A. C. Smith, “Direct drive marine propulsion motors,” in Proc. Int. Conf. Electrical Machines (ICEM), Bruges, Belgium, 2002, CD-ROM, Paper 807.
[7] S. Smith, “Developments in power electronics, machines and drives,” IEE Power Eng. J., vol. 16, no. 1, pp. 13–17, 2002.
[8] F. Terrien, S. Siala, and P. Noy, “Multiphase induction motor sensorless control for electric ship propulsion,” in Proc. IEE PEMD Conf., Edinburgh, U.K., 2004, pp. 556–561.
[9] C. L. Ferreira and R. W. G. Bucknall, “Modelling and real-time simulation of an advanced marine full-electrical propulsion system,” in Proc. IEE PEMD Conf., Edinburgh, U.K., 2004, pp. 574–579.
[10] S. D. Sudhoff, J. T. Alt, N. J. Hegner, and H. N. Robey, Jr., “Control of a 15-phase induction motor drive system,” in Proc. Naval Symp. Electr.Mach., Newport, RI, 1997, pp. 69–75.
[11] S. Lu and K. Corzine, “Multilevel multi-phase propulsion drives,” in Proc. IEEE ESTS, Philadelphia, PA, 2005, pp. 363–370.
[12] M. G. Simoes and P. Vieira, “A high-torque low-speed multiphase brushless machine—A perspective application for electric vehicles,” IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1154–1164, 2002.
[13] H.Henao, G.A. Capolino, M. Fernandez-Cabanas, F. Filippetti, C. Bruzzese, E. Strangas, R. Pusca, J. Estima, M. Riera-Guasp and S. Hedayati-Kia , “Trends in FaultDiagnosis for Electrical Machines: A Review of Diagnostic Techniques,” IEEE Ind. Electron. Magazine, vol 8, no. 2, pp. 31-42, 2014.
[14] L. Zarri, M. Mengoni, Y. Gritli, A. Tani, F. Filippetti, G. Serra and D. Casadei, “Detection and localization of stator resistance dissymmetry based on multiple reference frame controllers in multiphase induction motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3506-3518, 2013.
[15] F. Immovilli, C. Bianchini, E. Lorenzani, A. Bellini and E. Fornasiero, “Evaluation of Combined Reference Frame Transformation for Interturn Fault Detection in Permanent-Magnet Multiphase Machines,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1912-1920, 2015.
[16] B. Sen and J. Wang, “Stator Interturn Fault Detection in Permanent-Magnet Machines Using PWM Ripple Current Measurement,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 3148-3157, 2016.
[17] M. Salehifar, M. Moreno-Eguilaz, G. Putrus and P. Barras, “Simplified fault tolerant finite control set model predictive control of a five-phase inverter supplying BLDC motor in electric vehicle driveMehdi,” Elsevier Electric Power System Research, vol. 132, pp. 56-66, 2016.
[18] S. Shao, A. J. Watson, J. C. Clare and P. W. Wheeler, “Robustness Analysis and Experimental Validation of a Fault Detection and Isolation Method for the Modular Multilevel Converter,” IEEE Trans. on Power Electron., vol. 31, no. 5, pp. 3794 – 3805, 2016 .
[19] I. A. Gowaid, G. P. Adam, A. M. Massoud, S. Ahmed, D. Holliday and B. W. Williams, “Quasi Two-Level Operation of Modular Multilevel Converter for Use in a High-Power DC Transformer With DC Fault Isolation Capability,” IEEE Trans. on Power Electron., vol. 30, no.1, pp. 108-123, 2015.
[20] H.S. Che, M.J. Duran, E. Levi, M. Jones, W.P. Hew and N.A. Rahim, “Post-fault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points,” IEEE Trans. on Power Electron., vol. 29, no. 10, pp. 5406-5416, 2014.
[21] I. Gonzalez-Prieto, M.J. Duran, F. Barrero, M. Bermudez and H. Guzman, “Impact of post-fault flux adaptation on six-phase induction motor drives with parallel converters,” IEEE Trans. on Power Electron., early access, DOI: 10.1109/TPEL.2016.2533719, 2016.
[22] A. Tani, M. Mengoni, L. Zarri, G. Serra and D. Casadei, “Control of multiphase induction motors with an odd number of phases under open-circuit phase faults,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 565-577, 2012.
[23] R. Kianinezhad, B. Nahid-Mobarakeh, L. Baghli, F. Betin and G.A. Capolino, “Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1996-1977, 2008.
[24] M. Bermudez, I. Gonzalez-Prieto, F. Barrero, H. Guzman, M.J. Duran, X. Kestelyn, “Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives,” IEEE Trans. Ind. Electron., early access, 2016.
[25] H. Guzman, M.J. Duran, F. Barrero, L. Zarri, B. Bogado, I. Gonzalez-Prieto and M.R. Arahal, “Comparative Study of Predictive and Resonant Controllers in Fault-Tolerant Five-phase Induction Motor Drives,” IEEE Trans. on Ind. Electron., vol. 63, no. 1, pp. 606-617, 2016.