Experiments and Simulations of an Automotive Exhaust Thermoelectric System

 

A. Massaguer, E. Massaguer, M. Comamala, A. Cabot, J.R. González and A. Deltell

 

2017/04/25

Abstract

Because of the increasing emphasis on environmental protection, applications of thermoelectric technology are being extensively studied.
Before a new car is released to the market, testing is undertaken to ensure it meets the latest emissions regulations. The regulations differ from country to country, but they are always getting more stringent. To meet these tightening regulations, car companies must reduce the fuel consumption of their cars. A waste heat recovery system has the potential to convert some of this waste heat into electricity and consequently reduce the fuel consumption of the car by reducing the load on the car alternator
The present experimental and computational study investigates an exhaust gas waste heat recovery system (WHRS) for vehicles, using thermoelectric modules and a heat exchanger to produce electric power.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 15)
Pages: 614-618 Date of Publication: 2017/04/25
ISSN: 2172-038X Date of Current Version:

REF: 409-17

Issue Date: April 2017
DOI:10.24084/repqj15.409 Publisher: EA4EPQ

Authors and affiliations

A. Massaguer(1), E. Massaguer(1), M. Comamala(1), A. Cabot(2), J.R. González(1) and A. Deltell(1)
1. Department of Mechanical Engineering and Industrial Construction. Polytechnic High School, University of Girona
Girona (Spain)
2. Institut de Recerca en Energia de Catalunya. Barcelona (Spain)

Key word

Thermoelectric finite element modeling, thermoelectric generator, LTEH, TEG, simulation

References

[1] S.B. Riffat, X. Ma, Thermoelectrics: A review of present and potential applications, Appl. Therm. Eng. 23 (2003) 913–935. doi:10.1016/S1359-4311(03)00012-7.
[2] D.V. Singh, E. Pedersen, A review of waste heat recovery technologies for maritime applications, Energy Convers. Manag. 111 (2016) 315–328. doi:10.1016/j.enconman.2015.12.073.
[3] B. Orr, A. Akbarzadeh, M. Mochizuki, R. Singh, A review of car waste heat recovery systems utilising TEM 1
https://doi.org/10.24084/repqj15.409 617 RE&PQJ, Vol.1, No.15, April 2017
thermoelectric generators and heat pipes, Appl. Therm. Eng. (2015). doi:10.1016/j.applthermaleng.2015.10.081.
[4] C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, D.J. Yao, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Appl. Energy. 88 (2011) 1291–1297. doi:10.1016/j.apenergy.2010.10.005.
[5] A. Massaguer Colomer, E. Massaguer, T. Pujol, M. Comamala, L. Montoro, J.R. González, Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control, Appl. Energy. 154 (2015) 709–717. doi:10.1016/j.apenergy.2015.05.067.
[6] Y.Y. Hsiao, W.C. Chang, S.L. Chen, A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine, Energy. 35 (2010) 1447–1454. doi:10.1016/j.energy.2009.11.030.
[7] A. Montecucco, A.R. Knox, Accurate simulation of thermoelectric power generating systems, Appl. Energy. 118 (2014) 166–172. doi:10.1016/j.apenergy.2013.12.028.
[8] A. Montecucco, J. Siviter, A.R. Knox, The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel, Appl. Energy. 123 (2014) 47–54. doi:10.1016/j.apenergy.2014.02.030.
[9] A. Rodríguez, J.G. Vián, D. Astrain, A. Martínez, Study of thermoelectric systems applied to electric power generation, Energy Convers. Manag. 50 (2009) 1236–1243. doi:10.1016/j.enconman.2009.01.036.
[10] E. Massaguer, A. Massaguer, L. Montoro, J.R. Gonzalez, Development and validation of a new TRNSYS type for the simulation of thermoelectric generators, Appl. Energy. 134 (2014) 65–74. doi:10.1016/j.apenergy.2014.08.010.
[11] G. Liang, J. Zhou, X. Huang, Analytical model of parallel thermoelectric generator, Appl. Energy. 88 (2011) 5193–5199. doi:10.1016/j.apenergy.2011.07.041.
[12] S.B. Riffat, X. Ma, Optimum selection (design) of thermoelectric modules for large capacity heat pump applications, Int. J. Energy Res. 28 (2004) 1231–1242. doi:10.1002/er.1025.
[13] L. Chen, J. Li, F. Sun, C. Wu, Performance optimization of a two-stage semiconductor thermoelectric-generator, Appl. Energy. 82 (2005) 300–312. doi:10.1016/j.apenergy.2004.12.003.
[14] J. Yu, H. Zhao, A numerical model for thermoelectric generator with the parallel-plate heat exchanger, J. Power Sources. 172 (2007) 428–434. doi:10.1016/j.jpowsour.2007.07.045.
[15] X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator, J. Power Sources. 188 (2009) 621–626. doi:10.1016/j.jpowsour.2008.12.067.