Propulsion Subsystem On Low Cost Electric Vehicles Using Common Large Scale Industrial Equipment


Claudinilson A. Luczkiewicz, César D. Paredes Crovato




The aim for this paper is to analyze parameters for the propulsion system of vehicles in urban operating conditions through the longitudinal dynamics, in order to map out devices and commonly used large scale industrial equipment, which could be used in these vehicles, maintaining compatible cost and performance characteristics. It is sought to shorten time-tomarket, which is typically high when developing proprietary solutions, and also to reduce typically high costs when using specific devices for electric cars, which are less disseminated than the industrial devices proposed. Industrial equipment such as induction motors and inverter drives using conventional
power sources were analyzed through the study of catalog listing information and axiomatic methods. Furthermore, it is demonstrated that the power supply, through conventional acidlead
batteries would be the main limiting factor for performance, stressing the need for other more effective and lighter sources. It also demonstrates that, for the national context, the two-power
train rear wheel drive configuration with automotive acidic lead source presents the best feature to be implemented in the traction system of an urban electric vehicle.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 15)
Pages: 927-932 Date of Publication: 2017/04/25
ISSN: 2172-038X Date of Current Version:

REF: 521-17

Issue Date: April 2017
DOI:10.24084/repqj15.521 Publisher: EA4EPQ

Authors and affiliations

Claudinilson A. Luczkiewicz, César D. Paredes Crovato
Department of Electrical Engineering. Universidade Vale do Rio dos Sinos. Campus of São Leopoldo – Rio Grande do Sul, (Brazil)

Key word

Electric Propulsion, Electric Vehicle, Urban Vehicle, Vehicle Dynamics


[1] HORI, Y.; FUJIMOTO, H.; MAEDA, K. Four-wheel Drivingforce Distribution Method for Instantaneous or Split Slippery
Roads for Electric Vehicle. Advanced Motion Control (AMC), 12th IEEE International Workshop on, Kashiwa Japan, 2012.
[2] EHSANI, M.; GAO, Y.; GAY, S. E.; EMADI, A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. New York:
CRC PRESS, 2005.
[3] GILLESPIE, T. D. Fundamentals of Vehicle Dynamics. SAE Society of Automotive Engineers, 1992.
[4] LARMINIE, J.; LOWRY, J. Electric Vehicle Technology Explained. Wiley: Osford, 2003.
[5] SOCIETY OF AUTOMOTIVE ENGINEERS. SAE J1263: road load measurement and dynamometer simulation using coastdown techniques. Warrendale, revised mar. 2010.
[6] ARRABAÇA, D. A.; GIMENES, S. P. Eletrônica de potência: conversores de energia. 1. ed. São Paulo: Érica, 2011.
[7] WEG Indústrias S/A. Guia de aplicação de inversores de frequência. Mundo Elétrico 2004.
[8] DEL TORO, V. Fundamentos de máquinas elétricas. Rio de Janeiro: Prentice-Hall, 1994.
[9] WEG Indústrias S/A. Motores elétricos: Guia de Especificações. 2015.
[10] VOGES. Motores elétricos trifásicos. Guia de Especificações 2010.
[11] NOVA – motores e geradores. Motores Trifásicos. 2015.
[12] SIEMENS. Motores elétricos de baixa tensão. Guia de Especificações. 2010.
[13] CHAGAS, M. W. P. Novas tecnologias para avaliação de baterias. 2007. 97 f. Dissertação – Instituto de Engenharia do Paraná (LACTEC), Curitiba, 2007.
[14] JOHNSON Controls. Treinamento técnico em baterias automotivas. Manual do Automóvel. Sorocaba, 2009.
[15] IEEE Recommended Practice for Design Features Lead-Acid Batteries for Stationary Applications. IEEE Std 485-2010, p. 1-90, April 2011.
[16] CROSS, N. Engineering design methods. 4. ed. England: WILEI, 2000.
[17] SOZO, V. Utilização da abordagem axiomática no processo de tomada de decisões pertinentes ao projeto conceitual de produtos. 2002. 120 f. (UFSC), Florianópolis, 2002.
[18] SISL – Sustainable Innovative Solutions Limited. Creating a sustainable competitive advantage with continuous systematic customer-driven innovation. For Innovation 2008.