Energy Storage Technologies towards Brazilian Electrical System

Silvera , V., Cantane, D. A., Reginatto, R., Ledesma, J. J. G., Schimdt, M. H. and Ando Junior, O. H.

2018/04/20

Abstract

Energy storage systems (ESS) have been attracted significant attention for improving the reliability
of the entire power system (generation, transmission, and distribution), mainly when associated with electric generation from intermittent renewable energies (RE). In particular, ESS combined with RE can provided a set of grid services for future power grid operators, including tension and load level regulation, energy (from peak to off-peak) and contingency reserves management as well as providing power quality and reactive power support. In this work, some those storage technologies are considered for future Brazilian power system, such as (i) pumped hydro storage, (ii) compressed air energy storage, (iii) flywheel, (iv) battery, (v) regenerative fuel cell and (vi) supercapacitor. Hence, this paper presents a detailed conceptual map of EES technologies attractive for application in Brazil, supported by a range of ranking tools (Brazilian entire grid peculiarities, future grid design and ESS already demonstrated on site). The technologies are conceptualized in three large group: unsuitable, possible or suitable, considering its application. Before any deployment, however, there is need for further development and field tests to prove its
feasibility and safety at power electrical system level.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 16)
Pages: 380-386 Date of Publication: 2018/04/20
ISSN: 2172-038X Date of Current Version:2018/03/23
REF: 319-18 Issue Date: April 2018
DOI:10.24084/repqj16.319 Publisher: EA4EPQ

Authors and affiliations

Silvera , V. 1,2, Cantane, D. A.2, Reginatto, R.1, Ledesma, J. J. G.4, Schimdt, M. H.3 and Ando Junior, O. H.4
1. Department of Electrical Engineering. State University of Paraná Western. Foz do Iguaçu - Paraná (Brazil)
2. Battery Laboratory. Itaipu Technological Park (PTI). Foz do Iguaçu - Paraná (Brazil)
3. Department of Planning and Control of the Distribution Expansion - DPLD. COPEL, Paranaense Energy Company
Mossunguê, Curitiba - PR. (Brazil)
4. Department of Renewable Energies. UNILA, Federal University of Latin American Integration-Foz do Iguaçu-PR (Brazil)

Key words

Future Generation, Renewable Energy, Storage Energy, Power Quality.

References

[1] Brasil. Ministério das Minas e Energia. Balanço Energético Nacional. Brasília. 2017.
[2] Brasil. Ministério das Minas e Energia, Empresa de Pesquisa Energetica. Plano Decenal de Expansão de Energia 2026. Rio de Janeiro, 2017.
[3] DNV GL. Safety, operation and performance of gridconnected energy storage systems. 2015.
[4] I, Gyuk, M. Johnson, J. Lynn, K. Parks, W. Handa, et al. Grid Energy Storage. 2013.
[5] P. Du and N. Lu (editors). Energy Storage for Smart Grids. Elsevier, 2015.
[6] M. Aneke and M. Wang. Energy storage technologies and real life applications – A state of the art review. Appl. Energy, 2016, vol. 179, pp. 350–377.
[7] X. Luo, J. Wang, M. Dooner and J. Clarke. Overview of current development in electrical energy storage technologies
and the application potential in power system operation. Appl. Energy, 2015, vol. 137, pp. 511–36.
[8] H. Zhao, Q. Wu, S. Hu, H. Xu and C. Rasmussen C. Review of energy storage system for wind power integration support. Appl. Energy, 2015; vol. 137, pp. 545–53.
[9] O. Palizban and K. Kauhaniemi. Energy storage systems in modern grids—Matrix of technologies and applications. Adv. Life Course Res, 2016; vol. 6, pp. 248–259.
[10] S. Ould, D. Rekioua, T. Rekioua, and S. Bacha. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy, 2016, vol. 41:20914–20927.
[11] F. A. Canales, A. Beluco and C. A. B. Mendes. Usinas hidrelétricas reversíveis no Brasil e no mundo: aplicação e
perspectivas. Rer. Eletrônica em Gestão, Educ. e Tecnol. Ambienta, 2015, vol. 19, pp. 1230–1249.
[12] R. Amirante, E. Cassone, E. Distaso and P. Tamburrano. Overview on recent developments in energy storage:
Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag., 2017. Vol. 132, pp.372–387.
[13] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding. Progress in electrical energy storage system: A critical
review. Prog. Nat. Sci., 2009, vol. 19, pp. 291–312.
[14] Y. Huang, P. Keatley, H. S. Chen, X. J. Zhang, A. Rolfe and N. J. Hewitt. Techno-economic study of compressed air
energy storage systems for the grid integration of wind power. Int J Energy Res., 2017, pp. 1–11.
[15] A. Fraleon and V. Lughi. Overview of Small Scale Electric Energy Storage Systems suitable for dedicated coupling with Renewable Micro Sources. 2015 Int. Conf. Renew. Energy Res. Appl, vol 5. pp. 1481–5.
[16] F. González, A. Sumper, O. Bellmunt, and R. Villafáfila. A review of energy storage technologies for wind power
applications. Renew. Sustain. Energy Ver. 2012, vol. 16, pp. 2154–2171.
[17] S. Hong, J. Radcliffe. Energy storage in the UK and Brazil: challenges, capability and opportunities. 2016.
[18] ANEEL. Banco de informações de geração: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Acesso: 20/10/17
[19] EPE. Estudos de planejamento da expansão da geração: Empreendimentos Eólicos, Algumas estatísticas obtidas da simulação da geração eólica na região Nordeste 2016.
[20] R. Nascimento. Energia Solar No Brasil: Situação E Perspectivas. 2017.
[22] A.F. Bueno, C. A. Brandão. Visão Geral de Tecnologia e Mercado para os Sistemas de Armazenamento de Energia Elétrica no Brasil. 2016.
[21] ANEEL. Nota Técnica n° 0056/2017-SRD/ANEEL. 2017.
[23] N. Leite, M. Delgado and F. Hage. Os Desafios do Armazenamento de Energia no Setor Elétrico. FGV Energy
2017, pp.10–12.
[24] A. Neto, F. Lotufo, N. Moskalenko, I. Bianchi and F. Wurtz. Obstacles to Energy Storage Deployment in Regulatory
context of smart grids in Europe and Brazil : current state and trends Obstacles to Energy Storage Deployment in Brazil. 3th ELECON 2015.