Analysis of a lead-acid battery storage system connected to the DC bus of a four quadrants converter to a microgrid

A. F. J. Rocha-Henríquez, B. J.M. Cabrera-Peña, C. R. Aguasca-Colomo, D. M. Méndez-Babey and E. P. Rivera-Rodríguez

2019/07/15

Abstract

The main problem found in the implementation of small microgrids where consumption is based on a certain number of loads (8,326,369 KWh total in the Canary Islands in 2017) [1] is the great variability of obtaining energy (361,1 MWh total in 2017) from renewable sources, the most important in the Canary Islands being wind and photovoltaic [2]. For these microgrids to be feasible and their power flows to be as constant as possible they must contain storage means, so that this energy can be used to stabilize the microgrid by compensating the irregularities of renewable energy sources [3], using them to perform regulation of voltage and frequency. In this sense, the batteries degrade very quickly when having to perform this type of highly dynamic efforts.
The purpose of this paper is to make a model of lead-acid battery and investigate the possibilities of application that the use of these batteries could have in the field of renewable energy. Specifically in the simulation of power electronics and control of back-to-back converters that allows to analyze, in different ranges of applications in a microgrid system of Pozo Izquierdo, where the following measurements have been made.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 151-154 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 249-19 Issue Date: July 2019
DOI:10.24084/repqj17.249 Publisher: EA4EPQ

Authors and affiliations

A. F. J. Rocha-Henríquez1, B. J.M. Cabrera-Peña2, C. R. Aguasca-Colomo3, D. M. Méndez-Babey3 and E. P. Rivera-Rodríguez2
1. Department of Renewable Energy. Instituto Tecnológico de Canarias, (ITC S.A.). Santa Lucía, Las Palmas (Spain)
2. Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria (ULPGC)
3. Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (IUSIANI), Universidad de Las Palmas de Gran Canaria (ULPGC) (Spain)

Key words

Back-to-Back converter, microgrid and modelling lead-acid batteries.

References

[1] "Gross production, availability and consumption of electrical energy by Canary Islands and periods", Canary Islands Statistics Institute (ISTAC), URL: http://www.gobiernodecanarias.org/istac/jaxi-istac/tabla.do.
[2] "Energy information on the Canary Islands". Web Local Energy Management Agency of Las Palmas de Gran Canaria. URL: https://energialaspalmasgc.es/informacion-energetica-canarias/
[3] A. F. J. Rocha, B. J. Cabrera, C. R. Aguasca, D. A. Vega, E. M. Méndez and F. J. Torres "Back-to-Back converters. State of the art", ICMEPE-2016, 11 July 2016, pp. 1-4, reference of the paper:149-16-rocha.
[4] A. T. Friedli, B. S. D. Round, C. D. Hassler and D. J. W. Kolar, "Design and Performance of a 200-kHz All-SiC JFET Current DC-Link Back-to-Back Converter", IEEE Transactions on Industry Applications, Vol. 45, Número 5, September 2009, pp.1868- 1878. DOI: 10.1109/TIA.2009.2027538
[5] "DC-Link Voltage Balancing Strategy Based on SVM and Reactive Power Exchange for a 5L-MPC Back-to-Back Converter for Medium-Voltage Drives", IEEE Transactions on Industrial Electronics, Vol: 63, Issue: 12, December 2016, pp. 7864- 7875. DOI: 10.1109/TIE.2016.2580128
[6] A. E. Bianchi, "Elementos de electroquímica: Electrolisis y acumuladores reversibles," Course Notes, University of Chile, Santiago, Chile (2008), pp. 1-67
[7] A. D. G. Murillo, "Modelamiento y análisis de sistemas fotovoltaicos", Doctoral Thesis, Polytechnic University of Catalonia, Barcelona (2003), p.p 1-97
[8] A. B. Severino, "Modelación de un sistema fotovoltaico y un banco de baterías de plomo ácido como elementos de una micro-red", Thesis civil engineer degree electrician, University of Chile, Santiago (2011), pp. 1-45.
[9] A. G. L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background", Journal of Power Sources, vol. 134, pp. 252-261, 2004. DOI: 10.1016/j.jpowsour.2004.02.031
[10] A. A. Shafiei, B. A. Momeni and C. S. Williamson, "Battery modeling approaches and management techniques for Plug-in Hybrid Electric Vehicles", Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, pp. 1- 5, 2011. DOI: 10.1109/VPPC.2011.6043191
[11] A. V. Esfahanian, B. A. Babak Ansari, C. H. Bahramian, D. P. Kheirkhah and E. G. Ahmadi, "Design parameter study on the performance of lead-acid batteries", Springer Journal of Mechanical Science and Technology, June 2014, pp. 2221-2229. DOI: 10.1007/s12206-014-0123-5
[12] A. A. Bogomolova, B. E. Komarova, C. K. Reber, D. T. Gerasimov, E. O. Yavuz, F. S. Bhatt and G. M. Aldissi "Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing", 2009 American Chemical Society, 13 April 2009, pp. 3944-3949. DOI: 10.1021/ac9002358
[13] A. R. M. S. Santos, B. C. L. G. de S. Alves, C. E. C. T. Macedo, D. J. M. M. Villanueva, E. L. V. Hartmann and F. S.Y.C. Catunda, "Lead Acid Battery SoC Estimation Based on Extended Kalman Filter Method Considering Different Temperature Conditions", in Proc. IEEE International Instrumentation and Measurement Technology Conference, 7 July 2017, pp. 1-6. DOI: 10.1109/I2MTC.2017.7969966
[14] A. Haoting Wang, B. Fan He and C. Lin Ma "Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads", Elsevier Ltd,. International Journal of Heat and Mass Transfer, 11 July 2016, pp. 154-164, DOI: 10.1016/j.ijheatmasstransfer.2016.07.041
[15] A. R. A. Jackey, "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection" The MathWorks, Inc, 2007, pp. 1-9. URL: https://es.mathworks.com/company/newsletters/articles/
[16] A. Xin Zhao and B. Raymond A. de Callafon, "Modeling of battery dynamics and hysteresis for power delivery prediction and SOC estimation", Elsevier Ltd., Applied Energy, 7 August 2016, pp. 823-833. DOI: 10.1016/j.apenergy.2016.08.044
[17] A. Ingemar Kaj and B. Victorien Konané, "Modeling battery cells under discharge using kinetic and stochastic battery models", Elsevier Ltd., Applied Mathematical Modelling, 31 March 2016, pp. 7901-7915. DOI: 10.1016/j.apm.2016.03.049
[18] A. Bing Liu, B. Wangwang Yu, C. Yueqiang Jin, and D. Shuying Wang, "Study on residual discharge time of lead-acid battery based on fitting method", AIP Publishing, May 2017, pp. 020008-1-020008-5, DOI: 10.1063/1.4982373
[19] A. J. M. Lujano-Rojas, B. G. J. Osório, C. T. D. P. Mendes, Covilha and J. P. S. Catalão, "Stochastic modeling of lead-acid battery parameters", IEEE, September 2016, pp. 1-5, INBN: 978-1-5090-4650-8