Wind Energy in Brazil: Current Overview and Projections on Power

Fernando de Lima Camargo, Nilcéia Cristina dos Santos, Reinaldo Gomes da Silva




National public policies contributed to the diffusion of wind energy in Brazil. The cost of production has been falling due to the infrastructure developed to meet the facilities required in the implementation of turbines that produce energy through the wind. Brazil has 534 wind farms with a total capacity of 13.4GW and the state of Rio Grande do Norte is the largest producer of this type of electricity, accounting for 27.7% of this amount. A justified strategy is the energy production of the winds during the dry season due to the supply of this source during this period, with the objective of preserving the reservoirs of the hydroelectric plants. The intermittency of the wind regime, the noise impact, the interference of the wind towers on the climate and the lack of research resources are some of the disadvantages that prevent the country from enjoying more of this inexhaustible source of energy.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 257-261 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 280-19 Issue Date: July 2019
DOI:10.24084/repqj17.280 Publisher: EA4EPQ


Authors and affiliations

Fernando de Lima Camargo1 e 2, Nilcéia Cristina dos Santos1, Reinaldo Gomes da Silva1 e 2
1. Faculdade de Tecnologia de Piracicaba “Dep. Roque Trevisan” (FATEC PIRACICABA). CEETPS, Centro Estadual de Educação Tecnológica Paula Souza, Piracicaba/SP (Brazil)
2. Escola de Engenharia de Piracicaba (EEP) FUMEP, Fundação Municipal de Ensino de Piracicaba. (Brazil)

Key words

Electric energy, sustainability, wind energy, economic impact.


[1] Adami, V. S.; Antunes Jr., J. A. V., Sellitto, M. A. Regional industrial policy in the wind energy sector: The case of the State of Rio Grande do Sul, Brazil. Energy Policy, n. 111, p. 18 – 27, 2017.
[2] AMARANTE; O. A. C.; BROWER, M.; ZACK, J. SÁ, A. L. Atlas do potencial eólico brasileiro. Brasília, 2001.
[3] Aquila, G.; Rocha, L. C. S.; Ritela Jr., P.; Pamplona, E. O.; Queiroz, A. R.; Paiva, A. P. Wind power generation: Animpact analysis of incentive strategies for cleaner energy provision in Brazil. Journal of Cleaner Production, n.
137, p. 1100 – 1108, 2016.
[4] Aquila, G.; Peruchi, R. S.; Rotela Jr., P.; Rocha, L. C. S.; Queiroz, A. R.; Pamplona, E. O.; Balestrassi, P. P. Analysis of the wind average speed in different Brazilian states using the nested GR&R measurement system. Measurement, 115, p. 217 – 222, 2018
[5] Bandoc, G.; Pravalie, R.; Patriche, C.; Degeratu, M. Spatial assessment of wind power potential at global scale.
A geographical approach. Journal of Cleaner Production, n. 200, p. 1065 – 1086, 2018.
[6] Beck, A. T.; Corrêa, M. R. S. New Design Chart for Basic Wind Speeds in Brazil. Latin American Journal of
Solids and Structures, n. 10, p. 707 – 723, 2013.
[7] Borges, A. Eólicas serão 2a. fonte de energia do País em 2019. O Estado de São Paulo, caderno Economia, p. B6 –
7, 5/08/2018.
[8] Dranka, G. G.; Ferreira, P. Planning for a renewable future in Brazilian power system. Energy, n. 164, p. 496 – 511,
[9] Freire, V. T. É possível elevar a fatia da energia limpa sem custo maior. Folha de São Paulo, caderno Mercado,
p. A26-27, 21/10/2018.
[10] Gerelli, E. S. Análise dos dados anemométricos coletados pela creluz no município de Palmeira das Missões/RS para geração de energia elétrica por fonte eólica. Trabalho de Conclusão de Curso. Ijuí: UNIJUÍ, 2017.
[11] Jong, P.; Dargaville, R.; Silver, J.; Utembe, S.; Kiperstok, A.; Torres, E. A. Forecasting high proportions of wind
energy supplying the Brazilian Northeast electricity grid. Applied Energy, n. 195, p. 538 – 555, 2017.
[12] Juárez, A. A.; Araújo, A. M.; Rohatgi, J. S.; Oliveira Fº., O. D. Q. Development of the wind power in Brazil: Political, social and technical issues. Renewable and Sustainable Energy Reviews, n. 39, p. 828 – 834, 2014.
[13] Letcher, T. M. Wind Energy Engineering: A handbook for onshore and offshore wind turbines. Elsevier, 2017.
[14] Leite, G. N. P.; Araújo, A. M.; Rosas, P. A. C. Prognostic techniques applied to maintenance of wind turbines: a
concise and specific review. Renewable and Sustainable Energy Reviews, n. 81, p. 1947 – 1925, 2018.
[15] Machuca, M. N. Análise ambiental, técnica e econômica da pós-operação de parques eólicos. Trabalho de
Conclusão de Curso. Florianópolis: UFSC, 2015.
[16] Mendes, L. F. R.; Sthel, M. S. Analysis of the hydrological cycle and its impacts on the sustainability of the electric
matrix in the state of Rio de Janeiro/Brazil. Energy Strategy Reviews, n. 22, p. 119 – 126, 2018.
[17] Miller, L. M.; Keith, D. W. Climatic Impacts of Wind Power, Joule, n.2, p. 1 – 15, 2018.
[18] Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D. Overview of wind power intermittency: Impacts, measurements, and
mitigation solutions. Applied Energy, n. 204, p. 47 – 65, 2017.
[19] Ren, G.; Wan, J.; Liu, J.; Yu, D.; Soder, L. Analysis of wind power intermittency based on historical wind power
data. Energy, 50, p. 482 – 492, 2018.
[20] Thresher, R.; Robinson, M. Veers, P. Wind Energy Technology: Current Status and R&D Future. Conference
Paper NREL/CP-500-43374 August 2008.
[21] Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renewable and SustainableEnergy Reviews, n. 49, p. 437 – 443, 2015.