Thin-film PV modules early degradation analysis: a case study on CIGS

A.M. Diez-Suárez, D. de la Calzada-Lorenzo, A. González-Martínez, L. Álvarez-de Prado, Á. de la Puente-Gil, J.J. Blanes-Peiró and M. de Simón-Martín



Solar Photovoltaic (PV) energy generation will be one of the main energy generation technologies in the inner future thanks to the recent and significant reduction of involved costs. One of the most promising and lowest cost technologies is the thin-film PV modules technology. Their currently lower
performance than single-Si PV modules is compensated by their lower costs and more aesthetical display, which make them especially attractive for building integration. However, because of the novelty of this technology, very few studies have been conducted to analyse its aging and degradation, which has a significant impact on the operation and maintenance needs and, in the end, in its Levelized Cost of Energy (LCOE). Thus, in this work, a systematic review on this technology and on its more frequent faults and degradation effects is conducted first. Then, a set of Copper Indium Gallium Selenide (CIGS) PV modules has been tested under real outdoor conditions and its
degradation has been analysed after 3 years operation. A new procedure for faults location and quantification has been established for this sort of PV modules; and early degradation and aging data are presented and analysed. Results show a significant early degradation of this technology and a fast expansion of the PV faults.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 320-326 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 299-19 Issue Date: July 2019
DOI:10.24084/repqj17.299 Publisher: EA4EPQ


Authors and affiliations

A.M. Diez-Suárez1, D. de la Calzada-Lorenzo1, A. González-Martínez1, L. Álvarez-de Prado2, Á. de la Puente-Gil1, J.J. Blanes-Peiró1 and M. de Simón-Martín1.
1. Dep. Area of Electrical Engineering. Energy Resources’ Smart Management (ERESMA) Research Group
School of Mining Engineering, Universidad de León (Spain). Campus de Vegazana s/n, Universidad de León, (Spain)
2. Dept. Area of Cartographic, Geodesic and Photogrammetric Engineering Energy Resources’ Smart Management (ERESMA) Research Group. School of Mining Engineering, Universidad de León (Spain)

Key words

Thin film PV, PV degradation and aging, PV faults, CIGS.


[1] IEA International Energy Agency, «Global Energy & CO2 Status Report The latest trends in energy and emissions in
2017», IEA International Energy Agency, mar. 2018.
[2] M. Malinowski, J. I. Leon, y H. Abu-Rub, «Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends», Proc. IEEE, vol. 105, n.o 11, pp. 2132-2146, nov. 2017.
[3] F. Ueckerdt, L. Hirth, G. Luderer, y O. Edenhofer, «System LCOE: What are the costs of variable renewables?», Energy, vol. 63, pp. 61-75, 2013.
[4] K. P. Bhandari, J. M. Collier, R. J. Ellingson, y D. S. Apul, «Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis», Renew. Sustain. Energy Rev., vol. 47, pp. 133-141, 2015.
[5] T. D. Lee y A. U. Ebong, «A review of thin film solar cell technologies and challenges», Renew. Sustain. Energy
Rev., vol. 70, pp. 1286-1297, 2017.
[6] Köntges M. et al., «IEA-PVPS T13-01 2014 Review of Failures of Photovoltaic Modules Final», IEA
International Energy Agency, mar. 2014.
[7] K. W. Jansen y A. E. Delahoy, «A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates», Thin Solid Films, vol. 423, n.o 2, pp. 153-160, 2003.
[8] M. de Simón-Martín, A. M. Diez-Suárez, L. Álvarez de Prado, A. González-Martínez, Á. de la Puente Gil, y J. Blanes-Peiró, «Development of a GIS tool for high precision PV degradation monitoring and supervision: Feasibility analysis in large and small PV plants», Sustain. Switz., vol. 9, n.o 6, 2017.
[9] AENOR, Norma UNE-EN 61646:2009 Módulos fotovoltaicos (FV) de lámina delgada para uso terrestre. Cualificación del diseño y homologación. p. 50.
[10] J. A. Tsanakas, L. Ha, y C. Buerhop, «Faults and infrared thermographic diagnosis in operating c-Si photovoltaic
modules: A review of research and future challenges», Renew. Sustain. Energy Rev., vol. 62, pp. 695-709, sep. 2016.
[11] FLIR, «Thermal imaging guidebook for building and renewable energy applications», Infrared Training Center
(ITC), Wilsonville. Oregón, Informative guide, 2011.
[12] «Peak Power Measuring Device and I-V Curve Tracer for PV Moduls and Generators. User Manual», PVEngineering
GmbH, Iserlhon. Germany, User Manual, nov. 2013.
[13] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, y S. Hajighorbani, «Power loss due to soiling on
solar panel: A review», Renew. Sustain. Energy Rev., vol. 59, pp. 1307-1316, jun. 2016.
[14] F. J. M. Teo, Tecnología de los Sistemas de información Geográfica. Ra-ma, 1995.
[15] A. Gerber et al., «Advanced large area characterization of thin-film solar modules by electroluminescence and
thermography imaging techniques», Sol. Energy Mater. Sol. Cells, vol. 135, pp. 35-42, abr. 2015.
[16] A. C. Vasko, A. Vijh, y V. G. Karpov, «Hot spots spontaneously emerging in thin film photovoltaics», ArXiv14010056 Cond-Mat, dic. 2013.