Thermal and Exergy Efficiency Analysis of a Solar-driven Closed Brayton Power Plant with Helium & s-CO2 as Working Fluids

C. Arnaiz del Pozo, S. Sanchez-Orgaz, J. Rodríguez Martín, A. Jiménez Álvaro, I. López Paniagua,
C. González Fernández and R. Nieto
Carlier

 

2019/07/15

Abstract

Solar Thermal Energy power plants operating with traditional steam Rankine cycles have a low thermal and exergy efficiency. An attractive pathway to increase the competitiveness of this technology is to investigate Closed Brayton cycles working with different fluids with desirable properties that show potential for improving their efficiency.
In this work a solar driven regenerative Brayton cycle is studied employing two different working fluids: Helium and supercritical CO2. The cycle efficiencies are determined for different turbine inlet temperatures and for the optimal compressor pressure ratios. Additionally, an exergy analysis breakdown of the different plant components is shown for each case, while the solar field sizes and working fluid flows are calculated for a fixed gas turbine output.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 383-389 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 319-19 Issue Date: July 2019
DOI:10.24084/repqj17.319 Publisher: EA4EPQ

 

Authors and affiliations

C. Arnaiz del Pozo1, S. Sanchez-Orgaz1, J. Rodríguez Martín1, A. Jiménez Álvaro1, I. López Paniagua1,
C. González Fernández1 and R. Nieto Carlier1
1. ETSI Industriales-Universidad Politécnica de Madrid, Spain. Madrid (Spain)

Key words

Helium, Closed Brayton, solar thermal, exergy, supercritical CO2

References

[1] W.H Stein and R. Buck. Advanced power cycles for concentrated solar power. Solar Energy (2017), Vol. 152, pp. 91-
105.
[2] V. Zare and M. Hasanzadeh. Energy and exergy analysis of a closed Brayton cycle-based combined. Energy Conversion and Management (2016). Vol. 128, pp. 227-237.
[3] K. Kusterer, R. Braun, N. Moritz, G. Lin, and D. Bohn. Helium Brayton Cycles with Solar Central Receivers:
Thermodaynamic and Design. ASME Turbo Expo 2012.
[4] K. Kusterer, R. Braun, N. Moritz, T. Sugimoto, K. Tanimura and D. Bohn. Comparative study of solar thermal Brayton cycles operated with helium or argon. ASME Turbo Expo 2013.
[5] S.M, Besarati and D.Y. Goswami. A computationally efficient method for the design of the heliostat field for solar
power tower plant. Renewable Energy (2014). Vol. 69, pp. 226-232.
[6] IDEA Instituto para la Diversificación y Ahorro de Energía. Evaluación del Potencial de la Energía Solar Termoeléctrica. Estudio Técnico 2011-2020.
[7] L. Coco-Enríquez, J.Muñoz-Antón, J.M. Martínez-Val. Dual Loop line-focusing solar power plants with supercritical Brayton power cycles. International Journal of Hydrogen Energy, Vol 42. (2017) pp. 17664-17680.
[8] Unisim Design User Guide. R451 Release. Honeywell (2017)
[9] V. S. Reddy, S.C. Kaushik, K.R. Ranjan and S.K. Tyagi, State-of-the-art of solar thermal power plants- A review.
Renewable and Sustainable Energy Reviews (2013). Vol. 27, 2013, pp. 258-273.