ROCOV scheme for Fault Detection and Location in HVDC systems

J. Díaz, O. Abarrategi, D.M. Larruskain, A. Perez-Basante and A. Rubio




A reliable DC fault protection system is essential for the development of HVDC grids. Therefore, this paper deals with the voltage derivative ROCOV scheme to locate and detect DC faults. The algorithm is able to differentiate internal and external faults considerably fast. The proposed algorithm is analyzed in a HVDC grid with different fault case scenarios. Finally, the ROCOV protection thresholds are discussed.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 429-434 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 336-19 Issue Date: July 2019
DOI:10.24084/repqj17.336 Publisher: EA4EPQ


Authors and affiliations

J. Díaz1, O. Abarrategi1, D.M. Larruskain1, A. Perez-Basante2 and A. Rubio2
1. Department of Electrical Engineering. University of the Basque Country UPV/EHU, Bilbao (Spain)
2. Energy Unit, Tecnalia. Parque Tecnológico de Vizcaya, Derio (Spain)

Key words

DC fault, Detection, HVDC Grid, Location, ROCOV.


[1] M.J. Pérez Molina, D.M. Larruskain, P. Eguia Lopez, O. Abarrategi, M. Santos-Mugica, “A comparison of non-unit
and unit protection algorithms for HVDC grids” AEIT HVDC International Conference 2019, Florence, Italy, May
9-10, 2019.
[2] L. Tang, ‘‘Control and protection of multi-terminal dc transmission systems based on voltage-source converters,’’
Ph.D. dissertation, Dept. Elect.Eng., McGill Univ., Montreal, Canada, 2003
[3] J. Yang, J. Fletcher, J. O’Reilly, ‘‘Multiterminal DC wind farm collection grid internal fault analysis and protection design’’ IEEE Trans. Power Del., vol. 25, no. 4, pp. 2308–2318, Oct. 2010.
[4] K. De Kerf, K. Srivastava, M. Reza, ‘‘Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems’’ IET Generat., Transmiss. Distrib,.vol. 5, no. 4, Apr. 2011, pp. 496–503.
[5] W. Leterme, J. Beerten, and D. Van Hertem, ‘‘Nonunit protection of HVDC grids with inductive DC cable termination’’ IEEE Trans. Power Del., vol. 31, no. 2, pp. 820–828, Apr. 2016.
[6] W. Leterme, S. P. Azad, and D. Van Hertem, ‘‘A local backup protection algorithm for HVDC grids,’’ IEEE Trans. Power Del., vol. 31, no. 4, pp. 1767–1775, Aug. 2016.
[7] M. Abedrabbo, D. Van Hertem, ‘‘A primary and backup protection algorithm based on voltage and current
measurements for HVDC grids’’ in Proc. Int. High Voltage Direct Current Conf., Oct. 2016, pp. 854–860.
[8] S. P. Azad, W. Leterme, D. Van Hertem, ‘‘Fast breaker failure backup protection for HVDC grids’’ Electr. Power
Systs. Res., vol. 138, pp. 99–105, Sep. 2015.
[9] J. Sneath, A. Rajapakse, ‘‘Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers’’ IEEE Trans. Power Del., 2014, DOI: 10.1109/TPWRD.2014.2364547
[10] M. Monterrubio. “Transporte de energía eléctrica en corriente continua. Enlaces HVDC-VSC”. Proyecto fin de
carrera. Universidad de Valladolid. Marzo, 2013.
[11] J. Häfner, B. Jacobson, “Proactive Hybrid HVDC Breakers: A key innovation for reliable HVDC grids,” in CIGRÉ Bologna Symp., Bologna, Italy, 13- 15 Sep. 2011,
[12] N. Ahmed, S. Norrga, H.-P. Nee, A. Haider, D. Van Hertem, L. Zhang, L. Harnefors, “HVDC supergrids with
modular multilevel converters the power transmission backbone of the future,” in Proc. IEEE SSD, 20-23 Mar. 2012.