Heat treatment of iron/carbon composites for energy storage: effect on
physicochemical and electrochemical properties


J. R. F. Gonçalves, C.F. Malfatti, E. Leal da Silva, G.R. Gonçalves, Miguel A. Schettino Jr., Jair C. C. Freitas and A. Cuña

 

2019/07/15

Abstract

Carbon materials are widely used as supercapacitor electrodes while iron oxides and other iron compounds are promising electrode materials due to its pseudocapacitive contribution. This work deals with the preparation and electrochemical characterization of iron/carbon composites for
supercapacitor electrode applications. The carbon precursor samples were prepared from a carbonization of babassu coconut endocarp, and the iron/carbon nanocomposites were obtained by
precipitation synthesis using iron salt, followed by a heat treatment at different temperatures. The electrochemical characterization of the samples show that, at low current density, the sample without iron compounds shows the higher electrical capacitance, up to 98 F g-1 in 2 M H2SO4. This good performance can be associated to a pseudocapacitive contribution of the oxygenated functional groups present in this sample. However, at higher current densities, the best electrochemical behaviour was achieved for the sample treated at 1000 °C. This good performance is may be associated to the Feº and Fe3C nanoparticles present in the sample which can enhance its
electrical conductivity. On the other hand, is no there clearly evidence of pseudocapacitive contribution of the iron particles. Future works will seek to improve the surface area of the materials with the aim to increase the double layer capacitance, and also to perform electrochemical studies using other electrolytes.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 506-510 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 359-19 Issue Date: July 2019
DOI:10.24084/repqj17.359 Publisher: EA4EPQ

 

Authors and affiliations

J. R. F. Gonçalves1, C.F. Malfatti1, E. Leal da Silva1,2, G.R. Gonçalves3, Miguel A. Schettino Jr.3, Jair
C. C. Freitas3, and A. Cuña2
1. LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS (Brazil)
2. Area Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República, Montevideo. (Uruguay)
3. Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo, Vitória, ES, Brazil

Key words

Energy storage, Supercapacitors, Pseudocapacitance, iron compounds, Biomass carbon materials

References

[1] REN21. 2013. Renewables Global Futures Report (Paris: REN21)
[2] Béguin F, Fr¹ckowiak E. Supercapacitors: Materials, Systems, and Applications. Wiley-VCH Verlag GmbH & Co.
Weinheim, 2013.
[3] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew Sust Energ Rev 2016, Vol. 58, pp. 1189–1206.
[4] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev.
2012, Vol. 41, pp. 797-828.
[5] D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, B. Bao, Polyaniline Coated Boron Doped Biomass Derived Porous Carbon Composites for Supercapacitor Electrode Materials, Ind. Eng. Chem. Res. 2015, Vol. 54, pp. 12570-12579.
[6] C. Breitkopf, K. Swider-Lyons, Handbook of Electrochemical Energy, Springer-Verlag Berlin Heidelberg, 2017.
[7] B.E. Conway, Electrochemical supercapacitors, Scientific Fundamentals and Technological applications. Kluwer
Academic/Plenum Publishers, New York, 1999.
[8] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 2006, Vol. 157, pp. 11-27.
[9] A. Cuña A, N. Tancredi, J. Bussi, A. C. Deiana, M. F. Sardella, V. Barranco, J. M. Rojo, E. grandis as a biocarbons
precursor for supercapacitor electrode application, Waste and Biomass Valor. 2014, Vol. 5, pp. 305-313.
[10] A. Cuña, M. R. Ortega Vega, E. Leal da Silva, N. Tancredi, C. Radtke, C. F. Malfatti, Nitric acid functionalization of carbon monoliths for supercapacitors: Effect on the electrochemical properties, Int. J. Hydrogen Energy 2016, Vol. 41, pp. 12127-12135.
[11] A. Cuña, N. Tancredi, J. Bussi, V. Barranco, T. A. Centeno, A. Quevedo, J. M. Rojo, Biocarbon Monoliths as Supercapacitor Electrodes: Influence of Wood Anisotropy on Their Electrical and Electrochemical Properties, J. Electrochem. Soc. 2014, Vol.161, pp. A1806- A1811.
[12] Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage,
Mater. Res. Lett. 5 (2017) 89-98.
[13] M.A. Teixeira, Babassu – A new approach for an ancient Brazilian biomass, Biomass Bioenerg. 32 (2008) 857-864.
[14] F.G. Emmerich, C. A. Luengo, Babassu charcoal: a sulfurless renewable thermo-reducing feedstock for steelmaking, Biomass Bioenerg 1996, Vol. 10, pp. 41-44.
[15] G.R. Gonçalves, M.A. Schettino Jr., M.K. Morigaki, E. Nunes, A.G. Cunha, F.G. Emmerich, E.C. Passamani, E. Baggio-Saitovitch, J.C.C. Freitas, Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment, J. Nanopart. Res. 2015, Vol. 17, pp. 303-313.
[16] T.R. Lopes, D.F. Cipriano, G.R. Gonçalves, H.A. Honorato, M.A. Schettino Jr., A.G. Cunha, F.G. Emmerich, J.C.C. Freitas, Multinuclear magnetic resonance study on the occurrence of phosphorus in activated carbons prepared by chemical activation of lignocellulosic residues from the babassu production. J. Chem. Environ. Eng. 2017, Vol. 5, pp. 6016-6029.
[17] J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4/Fe-carbon nanocomposites with Fe-carbon double conductive network as supercapacitor, Electrochim. Acta 2016, Vol. 215, pp. 483-491.
[18] Y. Li, Q. Li, L. Cao , X. Cui , Y. Yang, P. Xiao, Y. Zhangb, The impact of morphologies and electrolyte solutions on the
supercapacitive behavior for Fe2O3 and the charge storage mechanism, Electrochim. Acta 2015, Vol. 178, pp. 171-178.
[19] M. INAGAKI et al. Advanced Materials Science and Engineering of Carbon. 1st ed. New York: Elsevier; 2014.
[20] PATRICE S.; GOGOTSI Y. Materials for electrochemical capacitors. Mature Materiais, 2008, Vol. 7, pp. 845 – 854.