IoT Monitoring systems applied to photovoltaic generation: The relevance for increasing decentralized plants


João L. F. Victor, Sandro C. S. Jucá, Renata I. S. Pereira, Paulo C. M. Carvalho, Luis M. Fernández-Ramírez

2019/07/15

Abstract

The increasing of photovoltaic plant installations at different scales promotes the development of monitoring systems that facilitate the communication, control and automation of the generating units, allowing to guarantee the predicted energy generation performance. Monitoring systems are composed of different interfaces that involve sensing and capturing data; conversion, treatment, pre-storage and transmission of data; and publishing and final storage through graphic interface. This article focuses on describing the growth of decentralized plants, as well as the increasing demand for monitoring and data acquisition system, commenting the limitations of current commercial models and presenting alternative developed monitoring systems with different platforms.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 17)
Pages: 536-544 Date of Publication: 2019/07/15
ISSN: 2172-038X Date of Current Version:2019/04/10
REF: 368-19 Issue Date: July 2019
DOI:10.24084/repqj17.368 Publisher: EA4EPQ

 

Authors and affiliations

João L. F. Victor1, Sandro C. S. Jucá1, Renata I. S. Pereira2, Paulo C. M. Carvalho2,
Luis M. Fernández-Ramírez3
1. Academic Master’s Program in Renewable Energy (PPGER). Federal Institute of Technology of Ceará (IFCE), Maracanaú Campus, Ceará (Brazil)
2. Department of Electrical Engineering. Federal University of Ceará (UFC). Pici Campus, Ceará (Brazil)
3. Research Group in Electrical Technologies for Sustainable and Renewable Energy (PAIDI-TEP-023)
Department of Electrical Engineering, University of Cadiz (UCA). Escuela Politécnica Superior de Algeciras, Cádiz (Spain)

Key words

PV plants, Decentralized generation, Monitoring systems, Data Acquisition

References

[1] EN21. Renewables 2018: Global Status Report. France: pp. 90-100, 2018.
[2] IEA. Key World Energy Statistics 2018. France: p. 55, 2018.
[3] Kabir, E., Kumar, P., Kumar, S., Adelodun, A. & Kim, K. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, pp.894-900.
[4] Fu, R., Feldman, D., Margolis, R., Woodhouse, M. and Ardani, K. (2017). U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. United States: N. p., 2017.
[5] Fraunhofer Institute for Solar Energy Systems (2017). Photovoltaics Report.
[6] Ackermann, T., Anderson, G., Soder, L. (2001). Distributed Generation: A Definition. Electric Power System Research 57(3), pp.195-204.
[7] Lettner, G., Auer, H., Fleischhacker, A., Schwabeneder, D., Dallinger, B. & Moisl, F. Existing and Future PV Prosumer Concepts. Austria: pp. 123, 2018.
[8] IRENA (2017). IRENA Cost and Competitiveness Indicators: Rooftop Solar PV. Abu Dhabi: pp. 120, 2017.
[9] Solar Energy Industries Association (2018). Solar Market Insight Report 2018 Q2. United States: N. p., 2018.
[10] Palensky, P. and Dietrich, D. (2011). Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), pp.381-388.
[11] Han, J. & Piette M. (2008). Solutions for summer electric power shortages: Demand response and its applicatio(ns in air conditioning and refrigerating systems. Refrigeration, Air Conditioning, and Electric Power Machinery, 29(1), pp. 1–4.
[12] Rahman S. & Rinaldy (1993). An efficient load model for analyzing demand side management impacts. IEEE Trans. Power Syst., 8(3), pp. 1219–1226.
[13] Pereira, E., Martins F., Abreu S. & Rüther R. Atlas Brasileiro de Energia Solar. INPE. Brasil: 2006, p. 60.
[14] Cronemberg, J., Caamaño-Martín E., & Sánchez, S. (2012). Assessing the solar irradiation potential for solar photovoltaic applications in buildings at low latitudes – Making the case for Brazil. Energy and Buildings, 55(1), pp. 264–272.
[15] Martins, F., Pereira E. & Abreu S. (2007). Satellite-derived solar resource maps for Brazil under SWERA Project. Solar Energy, 81(4), pp. 517–528.
[16] European Database for Daylight and Solar Radiation (2005).
[17] ANEEL – Sistema de Apoio à Decisão (2018). [online] Available: http://www2.aneel.gov.br/area. cfm?idArea=550. Accessed 12 Dec. 2018.
[18] Decree Nº 5.163/2004 (Brazil). [online] Available: http://www.planalto.gov.br/ccivil_03/_ Ato2004-2006/2004/Decreto/D5163.htm. Accessed 12 Dec. 2018.
[19] Normative Resolution ANEEL 482/2012 (Brazil).
[20] ANEEL (2018). BIG – Banco de Informação da Geração. [online] Available: http://www2.aneel. gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Accessed 12 Dec. 2018.
[21] Associação Brasileira de Energia Solar Fotovoltaica (2018). [online] Available: http://www.absolar.org.br/. Accessed 12 Dec. 2018.
[22] ONS - Boletins de Operação (2018). [online] Available: http://ons.org.br/paginas/resultados-da-operacao/boletins-da-operacao. Accessed 12 Dec. 2018.
[23] Greener (2018). Strategic Study – Greener 2017 – 2018. [online] Available: https://www.greener.com.br /pesquisas-de-mercado/. Accessed 12 Dec. 2018.
[24] Di Santo K., Kanashiro, E., Di Santo S. & Saidel M. (2015). A review on smart grids and experiences in Brazil. Renewable and Sustainable Energy Reviews, 52(1), pp. 1072-1082.
[25] Gallo, J., Macedo, M., Almdeia, L. & Lima, A. (2014). Criteria for smart grid deployment in Brazil by applying the Delphi method. Energy, 70, pp 605-611.
[26] Fadaeenejada M., Saberiana A., Fadaeeb M., RadziaH M., Hizama H. & AbKadira M. (2014). The present and future of smart power grid in developing countries. Renewable and Sustainable Energy Reviews, 29(1), pp. 824-834.
[27] A. Triki-Lahiani, A. Bennani-Ben Abdelghani & I. Slama-Belkhodja, (2018). Fault detection and monitoring systems for photovoltaic installations: A review. Renewable and Sustainable Energy Reviews, 82, pp.2680-2692.
[28] IEC (1998). IEC 61724. Photovoltaic system performance monitoring – Guidelines for measurement,data exchange and analysis.
[29] M. Rahman, J. Selvaraj, N. Rahim & M. Hasanuzzaman, (2018). Global modern monitoring systems for PV based power generation: A review. Renewable and Sustainable Energy Reviews, 82, pp.4142-4158.
[30] S. Madeti & S. Singh, (2017). Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 67, pp.1180-1207.
[31] Manzano, S. et al.. (2014). An overview of remote monitoring PV systems: acquisition, storages, processing and publication of real-time data based on cloud computing, (November), p. 8. Available at: https://www.researchgate.net/publication/306105399. Accessed 30 May 2019.
[32] SMA (2018). Monitor Simply and Security (report).
[33] Fronius (2016). Fronius Solar.Web (user guide manual).
[34] ABB (2017). ABB monitoring and communications Aurora Vision® Plant Management Platform (user guide manual).
[35] SolarEdge (2018). SolarEdge Monitoring Portal User Guide (user guide manual).
[36] Sungrow (2016). SG33KTL-M PV Grid-Connected Inverter (user guide manual).
[37] US. Department of Energy (2015). Photovoltaic Systems with Module-Level Power Electronics (report).
[38] Lopez, M., Mantinan, F. and Molina, M. (2012). Implementation of wireless remote monitoring and control of solar photovoltaic (PV) system. 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA).
[39] Swath B.S, Dr. H S Guruprasad. Integration of Wireless Sensor Networks and Cloud Computing. Seventh International, 2011.
[40] Arduino (2019). Arduino Uno Rev 3. [online]. Available at: https://store.arduino.cc/usa/arduino-uno-rev3. Accessed 30 May 2019.
[41] Raspberry Pi (2019). Raspberry Pi 3: Specs, benchmarks & testing. [online]. Available at: https://www.raspberrypi. org/magpi/raspberry-pi-3-specs-benchmarks/. Accessed 30 May 2019.